| oad and Transform Guide

Table of Contents

1. About ThisS DOCUMENT . .o oo e e et e e e e e e e e e e 5
1.1, Intended AUIENCE 5
1.2. New and Changed Information e e e 5
1.3. NOtation CONVENTIONSottt e e e e e e 6
1.4. CommeENtS ENCOUNAgETottt e e e e e e e e e 8

2. INtrOTUCHION . o o 9
2.1, Load Methods o 9

2.0 L INSEIt Ty PO S . ot 11
2. 2. UNl0ad .. 12

3. Tables and INOeXeS 13
3.1, ChooSE Primary KBY . ..o 13
32, SAIING . o 13
3.3. Compression and ENCOAINGottt e 14
3.4. Create Tables and INAeXES 14
3.5, Update StatiStiCS . . . vttt e e 15

3.5.1. Default Sampling oo e 15
3.6. Generate Single-Column and Multi-Column Histograms From One Statement 16
3.6.1. Enable Update Statistics AULOMALIONo e 16
3.6.2. Regenerate Histogramso e 17

4. BUIK Load ..o 18

4.1. Load Data From Trafodion Tables 18
A 0. L. EXAMPIE o e e 18
4.2. Load Data From HDFS Files e e e e 18
A 2. L EXAMPIE .o 19
4.3. Load Data From Hive Tables 20
4. 3. L. EXAMPIE o 21
4.4, Load Data From External Databases 21
4.4.1. Install Required SOfWaAre 22
4.4.2. Sample Soop COMMANGSttt e e 22
A4 3 EXAMPIE . o 23

B Trickle Load 24
5.1, Improving TRroUgNpUL . . .o oo 24
L7 o o | o 25

5.2.1. 0db ThrOUGNPUL . ..o e 26
5.2.2. 00D Load 27
5.2.3. 00D COPY .t 29
5.2.4. 00D EXITACEottt 30
5.2.5. 0db TranS O M . o 32
6. BUIK UNIOAd 35
7. M ONIEOr PrOg eSS . o ot ettt e e e e e e 36

7.1 INSERT and UP SERT . 36

7.2. UPSERT USING LOAD .. e e 36

7.3 LOAD o 36

8. TroUDIESNOOT . . o 38
8.1. Improving ThroUgnpUL 38
8.1.1. TUPIEliStS OF ROWSEESo 38

8.1.2. Native HBase Tables 38

8.1.3. Hive Tables . ..o 38

8.2. Checking Plan Quality e e 38
8.3. UPDATE STATISTICS Times Out During Sampling e e e e e 39
8.4. Index Creation Takes TOO LONG . . .t ottt it e e e e e e e e e e e e e e 40
8.5. Large Deletes Take Too Long or Error QULo oot e 40

8.6. Large UPSERT USING LOAD On a Table With Index Errors Out e 40

Load and Transform Guide

License Statement

Licensed to the Apache Software Foundation (ASF) under one or more contributor license
agreements. See the NOTICE file distributed with this work for additional information
regarding copyright ownership. The ASF licenses this file to you under the Apache
License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the
License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS
OF ANY KIND, either express or implied. See the License for the specific language

governing permissions and limitations under the License.

Disclaimer: Apache Trafodion is an effort undergoing incubation at the Apache Software
Foundation (ASF), sponsored by the Apache Incubator PMC. Incubation is required of all
newly accepted projects until a further review indicates that the infrastructure,
communications, and decision making process have stabilized in a manner consistent with
other successful ASF projects. While incubation status is not necessarily a reflection of the
completeness or stability of the code, it does indicate that the project has yet to be fully

endorsed by the ASF.

Preface | 1

http://www.apache.org/licenses/LICENSE-2.0

Load and Transform Guide

Acknowledgements

Microsoft®, Windows®, Windows NT®, Windows® XP, and Windows Vista® are U.S.
registered trademarks of Microsoft Corporation. Intel® and Intel® Itanium® are
trademarks of Intel Corporation in the U.S. and other countries. Java® is a registered
trademark of Oracle and/or its affiliates. Motif, OSF/1, UNIX®, X/Open®, and the X device

Is a trademark of X/Open Company Ltd. in the UK and other countries.

OSF, OSF/1, OSF/Motif, Motif, and Open Software Foundation are trademarks of the Open
Software Foundation in the U.S. and other countries. © 1990, 1991, 1992, 1993 Open

Software Foundation, Inc.

The OSF documentation and the OSF software to which it relates are derived in part from
materials supplied by the following: © 1987, 1988, 1989 Carnegie-Mellon University. ©
1989, 1990, 1991 Digital Equipment Corporation. © 1985, 1988, 1989, 1990 Encore
Computer Corporation. © 1988 Free Software Foundation, Inc. © 1987, 1988, 1989, 1990,
1991 Hewlett-Packard Company. © 1985, 1987, 1988, 1989, 1990, 1991, 1992
International Business Machines Corporation. © 1988, 1989 Massachusetts Institute of
Technology. © 1988, 1989, 1990 Mentat Inc. © 1988 Microsoft Corporation. © 1987, 1988,
1989, 1990, 1991, 1992 SecureWare, Inc. © 1990, 1991 Siemens Nixdorf Informations
systeme AG. © 1986, 1989, 1996, 1997 Sun Microsystems, Inc. © 1989, 1990, 1991

Transarc Corporation.

OSF software and documentation are based in part on the Fourth Berkeley Software
Distribution under license from The Regents of the University of California. OSF
acknowledges the following individuals and institutions for their role in its development:
Kenneth C.R.C. Arnold, Gregory S. Couch, Conrad C. Huang, Ed James, Symmetric
Computer Systems, Robert Elz. © 1980, 1981, 1982, 1983, 1985, 1986, 1987, 1988, 1989
Regents of the University of California. OSF MAKES NO WARRANTY OF ANY KIND

2 | Preface

Load and Transform Guide

WITH REGARD TO THE OSF MATERIAL PROVIDED HEREIN, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE. OSF shall not be liable for errors contained herein or for
incidental consequential damages in connection with the furnishing, performance, or use

of this material.

Preface | 3

Load and Transform Guide

Revision History

Version Date

2.1.0 TBD

2.0.1 July 7, 2016
2.0.0 June 6, 2016
1.3.0 January, 2016

4 | Preface

Load and Transform Guide

Chapter 1. About This Document

This guide describes how to load and transform data into a Trafodion database.
The information herein is complementary to the following Trafodion documentation:

 Trafodion SQL Reference Manual

» Trafodion odb User Guide

1.1. Intended Audience

This guide targets anyone wanting to load data into a Trafodion database.

You need to have skills in the following areas to make full use of the information in this guide:

SQL DDL and DML.

Installation and configuration of Linux software.

Trafodion administration.

» Depending on your data source, Java and/or Hadoop ecosystem usage.

1.2. New and Changed Information

This is a new guide.

Chapter 1. About This Document | 5

http://trafodion.incubator.apache.org/docs/sql_reference/index.html
http://trafodion.incubator.apache.org/docs/odb/index.html

Load and Transform Guide

1.3. Notation Conventions

This list summarizes the notation conventions for syntax presentation in this manual.

UPPERCASE LETTERS

Uppercase letters indicate keywords and reserved words. Type these items exactly as shown. Items not enclosed in

brackets are required.

SELECT

lowercase letters

Lowercase letters, regardless of font, indicate variable items that you supply. Items not enclosed in brackets are

required.

file-nane

[] Brackets

Brackets enclose optional syntax items.

DATETI ME [start-field TQ end-field

A group of items enclosed in brackets is a list from which you can choose one item or none.

The items in the list can be arranged either vertically, with aligned brackets on each side of the list, or horizontally,

enclosed in a pair of brackets and separated by vertical lines.

For example:

DROP SCHENA schema [CASCADE]
DROP SCHEMA schema [CASCADE | RESTRICT]

{} Braces

Braces enclose required syntax items.

FROM { grantee [, grantee] ... }

6 | Chapter 1. About This Document

Load and Transform Guide

A group of items enclosed in braces is a list from which you are required to choose one item.

The items in the list can be arranged either vertically, with aligned braces on each side of the list, or horizontally,

enclosed in a pair of braces and separated by vertical lines.

For example:

I NTERVAL { start-field TO end-field }
{ single-field }
I NTERVAL { start-field TO end-field | single-field }

| Vertical Line

A vertical line separates alternatives in a horizontal list that is enclosed in brackets or braces.

{expression | NULL}

... Ellipsis

An ellipsis immediately following a pair of brackets or braces indicates that you can repeat the enclosed sequence of

syntax items any number of times.

ATTRIBUTE[S] attribute [, attribute]
{, sql-expression }

An ellipsis immediately following a single syntax item indicates that you can repeat that syntax item any number of

times.

For example:

expression-n ...

Punctuation

Parentheses, commas, semicolons, and other symbols not previously described must be typed as shown.

DAY (dateti me-expression)
@cript-file

Quotation marks around a symbol such as a bracket or brace indicate the symbol is a required character that you must

Chapter 1. About This Document | 7

Load and Transform Guide
type as shown.

For example:
"{" nodul e-nane [, nodul e-nane] ... "}"

* Item Spacing

Spaces shown between items are required unless one of the items is a punctuation symbol such as a parenthesis or a

comma.
DAY (dateti me-expression) DAY(datetine-expression)

If there is no space between two items, spaces are not permitted. In this example, no spaces are permitted between

the period and any other items:
nmyfile.sh

* Line Spacing

If the syntax of a command is too long to fit on a single line, each continuation line is indented three spaces and is

separated from the preceding line by a blank line.

This spacing distinguishes items in a continuation line from items in a vertical list of selections.

mat ch-val ue [NOT] LIKE _pattern
[ESCAPE esc- char - expressi on]

1.4. Comments Encouraged

We encourage your comments concerning this document. We are committed to providing documentation that meets your

needs. Send any errors found, suggestions for improvement, or compliments to user@trafodion.incubator.apache.org.

Include the document title and any comment, error found, or suggestion for improvement you have concerning this

document.

8 | Chapter 1. About This Document

mailto:user@trafodion.incubator.apache.org

Load and Transform Guide

Chapter 2. Introduction

2.1. Load Methods

There are two methods used to load data into a Trafodion table. Both methods can run while the database is concurrently

queried:
Type Description Methods/Tools
Bulk Load Large data volumes Trafodion Bulk Loader
Stage data and load in the batches
Trickle Load Small data volumes ETL tool
Insert data as it arrives Custom ODBC/JDBC application
User-Defined Functions
odb Tool

These two methods use four types of SQL insert statements

e Bulk Load

* LOAD

» Trickle Load
e INSERT
« UPSERT

* UPSERT USING LOAD

The Trafodion SQL Reference Manual provides syntax descriptions for these statements.

The data source defines what type of load approach and method you use:

e Bulk Load (LOAD statement)

» Text Files: Map an external Hive table.

JDBC-Compliant Database: Load into Hive on the Trafodion cluster using sqoop.

Hive Tables: Direct load.
* Native HBase Tables: Direct load.

 Disparate Data Source: Write Java/C++ UDF to read data from source and pass rows to LOAD.

Chapter 2. Introduction | 9

http://trafodion.incubator.apache.org/docs/sql_reference/index.html#load_statement
http://trafodion.incubator.apache.org/docs/sql_reference/index.html#insert_statement
http://trafodion.incubator.apache.org/docs/sql_reference/index.html#upsert_statement
http://trafodion.incubator.apache.org/docs/sql_reference/index.html#upsert_statement
http://trafodion.incubator.apache.org/docs/sql_reference/index.html

Load and Transform Guide

 Trickle Load (odb utility)
 Text Files: Direct access
* pipes: Viastdin

* ODBC-Compliant Database: odb COPY command, no intermediate storage

For more information, refer to:

e Bulk Load

 Trickle Load

10 | Chapter 2. Introduction

Load and Transform Guide

2.1.1. Insert Types

The following insert types are supported in Trafodion:

« LOAD INTO T ...

I NSERT INTO T ...

UPSERT INTO T ...

UPSERT USI NG LOAD INTO T ...

The following table compares the different insert types:

Characteristic INSERT UPSERT UPSERT USING LOAD
LOAD
Transaction Yes Yes No, uses HBase WAL No, uses snapshot for

Method of Operation

Uniqueness
Constraint

Index

Max Size/lnvocation
Min Size/lnvocation

Speed

Uses the standard
HBase write path
through its
CheckAndPut call.
Rows are held in
transaction co-
processor memory until
the transaction is
committed.

Enforced

Can be used on a table Can be used on a table

with an index.

10,000 * n* rows
1 row

Slowest

1 n is the number of nodes in each invocation.

Uses the standard
HBase write path
through its Put call.

Not enforced. New row
with the same key
value overwrites
previous row.

with an index.

10,000 * n* rows
1 row

Faster than INSERT

Throughput, max/min sizes depends on multiple factors:

» Format of rows in Trafodion table (aligned format or not).

 Length of row.

e Number of columns in row.

for recovery

Uses the standard
HBase write path
through its Put call.

Not enforced. New row
with same key value
overwrites the previous
row.

When used on a table
with an index, it reverts
to UPSERT.

5 million * n* rows
1 row

Faster than UPSERT

recovery

Uses the HBase bulk
load write path and
creates HFiles directly,
bypassing HBase
RegionServers for most
of its operation.

Enforced only within
the set of rows in a
single statement. Not
enforced with rows
already in the table.

Can be used on a table
with an index. Index is
off-line during the
LOAD.

2 billion * n* rows
Suitable for greater
than 1 million * n* rows

Fastest

Chapter 2. Introduction | 11

Load and Transform Guide

Data type of columns.

Network between nodes in cluster.

WAL setting.
e Number of clients.

» Use of rowsets.

2.2. Unload

The Trafodion UNLOAD statement exports data from Trafodion tables into an HDFS directory. Refer to Bulk Unload for

more information.

12 | Chapter 2. Introduction

Load and Transform Guide

Chapter 3. Tables and Indexes

The following guidance helps you set up your tables and indexes for better load performance.

3.1. Choose Primary Key

The primary key for a Trafodion table must be chosen based on the workload that accesses the table.

Keyed access to Trafodion tables is very efficient since HBase is a key-value store. You need to analyze the queries that
are used to access the tables to understand their predicates and join conditions. Once identified, you can choose a

primary key that ensures that the leading key columns have highly selective predicates applied to them.

This technique limits the number of rows that need to scanned in the HBase. Trafodion uses MDAM (Multi Dimensional
Access Method) to limit the rows scanned when predicates are present to only trailing key columns and not the leading
key column. MDAM works best when the unique entry count of leading key columns (on which predicates are absent) is

low.

3.2. Salting

With range partitioned data in some workloads, certain key ranges of data may see more access than other key ranges.
This can lead to an unbalanced usage pattern with some HBase RegionServers handling most of the load. This behavior

is referred to as "hot-spotting."

With Native HBase tables, hot-spotting is often addressed by designing appropriate keys. In Trafodion, once you choose
the key to a table, as discussed in Choose Primary Key, you can use salting to distribute the data evenly. Salting applies
a hash function to the salt keys and distributes data to partitions based on this hash value. The hash value is physically

stored in the table as the leading key value. Each split of the table will have only one salt key value.

The salting key can be any subset (including the whole set) of the primary key. It is a good practice to keep the salting key
as small as possible. The key should provide an even distribution of data, which can be achieved when the key values

have a large unique entry count and no significant skew.

The number of partitions must also be specified during table creation. You choose the number of partition depending on
the size of the cluster and the expected size of the table. A salted table can split if more data is added to it than initially
estimated. If this happens, then more than one partition having rows with the same salt value, which may result in

suboptimal execution plans for the table.

Chapter 3. Tables and Indexes | 13

Load and Transform Guide

You can also choose not to salt Trafodion tables. This is similar to range partitioning in a traditional database. The number

of partitions grows with the size of the table, and range boundaries are determined by HBase based on the specified split

policy.
3.3. Compression and Encoding

Large Trafodion tables must be encoded and compressed. Trafodion tables that have a large key or several columns grow
in size to 10X or more when compared to a Hive table with equivalent data since HBase stores the key separately for

every column in a row.

HBase provides several types of encoding to avoid storing the same key value to disk for every column in the row. HBase
also supports various types of compression of the entire data block, regardless whether it is encoded or not. See
Appendix E: Compression and Data Block Encoding In HBase in the Apache HBase Reference Guide for a comparison of
various compression and encoding algorithms. Use the information in the Which Compressor or Data Block Encoder To

Use section to determine the best compression technique for your tables. <<<

3.4. Create Tables and Indexes

Create Trafodion tables using the CREATE TABLE statements with the SALT USI NG <nun® PARTI Tl ONS clause for
salting and the HBASE_OPTI ONS clause for compression and encoding.

Example

CREATE TABLE traf odi on. sch. deno

(denp_sk I NT NOT NULL

, hame VARCHAR(100)

, PRI MARY KEY (denp_sk)

)

HBASE_OPTI ONS

(DATA BLOCK _ENCODI NG = ' FAST_DI FF'
, COVPRESSI ON = ' SNAPPY

, MEMSTORE_FLUSH SI ZE = ' 1073741824'

)
SALT USI NG 8 PARTI TI ONS ON (denp_sk);

ANY indexes on the table may be salted or not. However, if they are salted, their salting key and number of partitions must

be the same as the table.

Example

14 | Chapter 3. Tables and Indexes

http://hbase.apache.org/book.html#compression
http://hbase.apache.org/book.html
http://hbase.apache.org/book.html#data.block.encoding.types
http://hbase.apache.org/book.html#data.block.encoding.types

Load and Transform Guide

CREATE | NDEX denp_i x ON sch. deno(nane)
HBASE OPTI ONS

(DATA _BLOCK_ENCODI NG = ' FAST_DI FF'

, COWPRESSION = ' &Z

)
SALT LI KE TABLE;

3.5. Update Statistics

To generate good plans that allow queries to execute quickly and use resources wisely, the Trafodion Optimizer must have
a good idea about how the values of columns are distributed, the number of distinct values, and so on. Trafodion supplies
this information to the optimizer in the form of histograms generated by executing the UPDATE STATISTICS statement.

See the Trafodion SQL Reference Manual for a full description of this statement.

3.5.1. Default Sampling

While accurate statistics are important, the time required to generate them by reading every row in the table may be
prohibitive and is usually unnecessary. Random sampling of the rows of the table can give adequate results in a fraction of
the time required to read all the values in the table. For most situations, the best option is to simply specify SAMPLE at the
end of the UPDATE STATISTICS statement, which will use the default sampling protocol. For example, to use default

sampling in the construction of histograms for each column of table T1, you would execute the following statement:
UPDATE STATI STI CS FOR TABLE t1 ON EVERY COLUWN SAMPLE;

This default sampling protocol uses a high sampling rate for small tables, reducing the rate with a steep gradient until

hitting 1% and capping the sample size at one million rows. The specific details of default sampling are as follows:

Use the full table for tables up to 10,000 rows.

For table sizes from 10,000 up to a million rows, 10,000 rows are randomly sampled. In effect, this causes the

sampling rate to decline from 100% to 1% as a function of increasing table size.

For tables with one million to 100 million rows, use a 1% random sample.

For tables exceeding 100 million rows, the sampling rate is calculated as 1 million divided by the number of rows in the
table. This limits the overall sample size to 1 million rows while ensuring uniform random sampling across the entire

table.

Chapter 3. Tables and Indexes | 15

http://trafodion.incubator.apache.org/docs/sql_reference/index.html#update_statistics_statement

Load and Transform Guide

3.6. Generate Single-Column and Multi-Column Histograms From One
Statement

If you use the ON EVERY COLUMN syntax in an UPDATE STATISTICS statement, then it is important to realize that
multi-column histograms can be requested in the same statement. For example, if you wanted to generate a histogram for
each single column of table T1, as well as multi-column histograms for column sets (c1, c¢2) and (c5, c6, c7), then you

could use the following statement:
UPDATE STATI STICS FOR TABLE t1 ON EVERY COLUWN, (cl1,c2), (cb5,c6,c7) SAVPLE;
In terms of the end result, this is equivalent to the following pair of statements:

UPDATE STATI STI CS FOR TABLE t1 ON EVERY COLUWN SAMPLE;
UPDATE STATI STICS FOR TABLE t1 ON (cl1, c2), (c5, c6, c7) SAMPLE;

However, the performance is superior when they are combined into a single statement because a multi-column histogram
depends on the single-column histograms of its component columns. Therefore, separating the generation of single-
column and multi-column histograms for a table into two statements leads to redundantly calculating some of the single-
column histograms. Even though the relevant single-column histograms already exist, they are recomputed at the time the

multi-column histograms are generated.

3.6.1. Enable Update Statistics Automation

If a standard set of queries is run on a regular basis, then one way to generate only those histograms that are needed for

efficient execution of those queries is to enable update statistics automation, and then PREPARE each of the queries:

CONTROL QUERY DEFAULT USTAT_AUTOVATI ON_I NTERVAL ' 1440' ;
PREPARE s FROM SELECT. . .;

The value of the CQD USTAT_AUTOMATION_INTERVAL is intended to determine the automation interval (in minutes) for
update statistics automation. The PREPARE statement causes the Trafodion Compiler to compile and optimize a query

without executing it. In the process of doing so with automation enabled, any histograms needed by the optimizer that are
missing causes those columns to be marked as needing histograms. Then, the following UPDATE STATISTICS statement

can be run against each table to generate the needed histograms:

UPDATE STATI STI CS FOR TABLE <t abl e- name> ON NECESSARY CCLUMNS SAMPLE;

16 | Chapter 3. Tables and Indexes

Load and Transform Guide

3.6.2. Regenerate Histograms

Histograms can become "stale" as the underlying data changes and possibly reflects a different distribution of values,
although it is possible that data turnover or accumulation can be high while maintaining the same distribution. To ensure
that statistics remain accurate, you should regenerate histograms for a table once significant changes have been made to
that table since its histograms were last generated. To refresh existing histograms without adding new ones, use the

following statement:
UPDATE STATI STI CS FOR TABLE <t abl e- name> ON EXI STI NG COLUMNS SAMPLE;

The critical set of histograms that were previously generated with the ON NECESSARY COLUMNS syntax can be
periodically regenerated using ON EXISTING COLUMNS. Note that using ON NECESSARY COLUMNS will only identify
those columns that have been previously requested by the optimizer but do not exist. The current implementation of

automation does not know which existing histograms might be stale.

Chapter 3. Tables and Indexes | 17

Load and Transform Guide

Chapter 4. Bulk Load

The LOAD statement enables batch loading large volumes of data efficiently in a scalable manner.
See the Trafodion SQL Reference Manual for a full description of this SQL statement.
You can bulk-load data using one of the following methods:

» Load Data From Trafodion Tables
e Load Data From HDFS Files
e Load Data From Hive Tables

» Load Data From External Databases

4.1. Load Data From Trafodion Tables

You copy data between two Trafodion tables by using the appropriate SELECT statement in the LOAD command.

4.1.1. Example

LOAD I NTO target table SELECT * FROM source_tabl e WHERE cust key >= 1000 ;

4.2. Load Data From HDFS Files

You copy your data (local or remote) into an HDFS folder. Then, you create an external Hive table (with correct fields) that
points to the HDFS folder containing the data. You may also specify a WHERE clause on the source data as a filter, if

needed. See the External Tables page on the Hive Wiki for more information.

Trafodion can access columns in Hive tables having integer, string and char types. See the LanguageManual Types page

on the Hive Wiki for the data types available in Hive.
Overall, you do the following:

1. Export the data on the local or remote cluster.
2. If applicable, transport files to Trafodion cluster via FTP, scp, or some other method.

3. Use LOAD referencing HIVE external tables.

18 | Chapter 4. Bulk Load

http://trafodion.incubator.apache.org/docs/sql_reference/index.html#load_statement
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL#LanguageManualDDL-ExternalTables
https://cwiki.apache.org/confluence/display/Hive
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Types
https://cwiki.apache.org/confluence/display/Hive

Load and Transform Guide

4.2.1. Example

You have a customer-demographics in a text file, which you need to load into Trafodion. The columns are separated by | .
Do the following:

1. Using trafci, define the Trafodion table where you want to load the data.

CREATE TABLE cust omer _denogr aphi cs_sal t
(

cd_denp_sk I NT NOT NULL
, cd_gender CHAR(1)
, cd_marital _status CHAR(1)

, cd_education_status CHAR(20)
, cd_purchase_estimate |INT

, ¢cd_credit_rating CHAR(10)
, cd_dep_count I NT

, cd_dep_enpl oyed count | NT

, cd_dep_college_count INT

, PRI MARY KEY (cd_denp_sk)

)
SALT USI NG 4 PARTI TI ONS ON (cd_denp_sk)

2. Copy the data into HDFS

hadoop fs -copyFronLocal $HOVE/ dat a/ customer _denogr aphi cs
/ hi ve/tpcds/ cust onmer _denographi cs

3. Using the Hive shell, create an external Hive table:

CREATE EXTERNAL TABLE custoner _denographics
(

cd_denmp_sk | NT
, c¢cd_gender STRI NG
, cd_marital _status STRI NG

, cd_education_status STRI NG
, c¢d_purchase_ estimate |INT
, ¢d _credit_rating STRI NG
, cd_dep_count | NT
, cd_dep_enpl oyed _count | NT
, ¢cd_dep_college _count |INT
)
ROW FORVAT DELI M TED
FI ELDS TERM NATED BY ' |
LOCATI ON '/ hi ve/ t pcds/ cust oner _denogr aphi cs'

Chapter 4. Bulk Load | 19

Load and Transform Guide

4. Using trafci, load the Trafodion cust oner _denogr aphi cs_sal t table from the Hive table named

hi ve. hi ve. cust oner _denogr aphi cs:

>>L0AD | NTO cust oner _denogr aphi cs_sal t

+>SELECT * FROM hi ve. hi ve. cust oner _denogr aphi cs WHERE cd_denp_sk <= 5000;

Task: LOAD Status: Started Object: TRAFODI ON. HBASE. CUSTOVER DEMOGRAPHI CS_SALT

Task: DI SABLE | NDEX Status: Started Object:

TRAFCDI ON. HBASE. CUSTOVER _DEMOGRAPHI CS_SALT

Task: DI SABLE | NDEX Status: Ended Object: TRAFODI ON. HBASE. CUSTOVER DEMOGRAPHI CS_SALT

Task: PREPARATION Status: Started Object: TRAFODI ON. HBASE. CUSTOVER DEMOGRAPHI CS_SALT
Rows Processed: 5000

Task: PREPARATI ON Status: Ended ET: 00:00:03.199

Task: COWPLETION Status: Started Object: TRAFODI ON. HBASE. CUSTOVER_DEMOGRAPHI CS_SALT

Task: COWPLETION Status: Ended ET: 00:00: 00. 331

Task: POPULATE | NDEX Status: Started Object:

TRAFODI ON. HBASE. CUSTOVER_DEMOGRAPHI CS_SALT

Task: POPULATE | NDEX Status: Ended ET: 00:00: 05. 262

4.3. Load Data From Hive Tables

You can import data from Hive using the trafci or sglci command interface. Do the following:

1. Set these required Control Query Defaults (CQDs) to improve load performance:

CQD HI VE_MAX_STRI NG _LENGTH ' 1000"; -- if the widest colum is 1KB

This setting is required if there are time-related column types in the target Trafodion table.

CQD ALLOW | NCOVPATI BLE_ASSI GNMVENT ' on' ;

2. Issue the LOAD statement to load data into Trafodion tables from Hive. For example:

LOAD W TH NO PCOPULATE | NDEXES | NTO tr af odi on. sch. denmo SELECT * FROM hi ve. hi ve. denv;

See the Trafodion SQL Reference Manual. for the complete syntax of the LOAD statement.

If you use multiple LOAD statements to incrementally load sets of data into a single target table, then several HFiles are
created for each partition of the target table. This causes inefficient access during SELECT queries and may also cause a

compaction to be triggered based on the policies configured in the HBase settings.

To avoid this issue, it is good practice to perform a major compaction on a table that has been the target of more than two

20 | Chapter 4. Bulk Load

http://trafodion.incubator.apache.org/docs/sql_reference/index.html#load_statement

Load and Transform Guide

LOAD statements in a short period of time. To perform compaction, use this hbase shel | command:

maj or _conpact ' TRAFODI ON. SCH. DEMO

The maj or _conpact command returns immediately since it's not waited. Typically, compaction of a
0 large table takes a long time (several minutes to hours) to complete. You can monitor the progress of

compaction from the HBase Master Web user interface.
4.3.1. Example

>> CQD HI VE_MAX STRI NG LENGTH ' 1000' ;
>> CQD ALLOW | NCOVPATI BLE_ASSI GNMVENT ' on'
>> LOAD W TH NO POPULATE | NDEXES | NTO tr af odi on. sch. deno SELECT * FROM hi ve. hi ve. deno ;

4.4. Load Data From External Databases

You need to import data into Hive when loading data from external databases. Use Apache Sqoop, an open-source tools

to move the data from the external database into Hive tables on the Trafodion cluster.

Source data can be in the following formats:

Format Examples

Structured Relational databases such as Oracle or MySQL.
Semi-Structured Cassandra or HBase

Unstructured HDFS

You use the Sqoop command-line shell for interactive commands and basic scripting.

Sqgoop basics:

Generic JDBC Connector: supports JDBC T-4 Driver.

Configuration Language for FROM/TO jobs that specify in SQL terms.

Partitioner: Divide/parallelize the data streams; uses primary key by default.

Extractor: Uses FROM configuration for SQL statements, plus partitioner information to query data subsets.
e Loader: Uses TO job configuration; INSERT INTO could be generated from col list or explicitly specified.

» Destroyer: Copies staging table to final table and deletes staging table.

See the Sqoop 5 Minutes Demo for a quick introduction to Sqoop.

Chapter 4. Bulk Load | 21

http://sqoop.apache.org/
http://sqoop.apache.org/docs/1.99.6/Sqoop5MinutesDemo.html

Load and Transform Guide

4.4.1. Install Required Software

By default, Sqoop is not installed on Trafodion clusters. Do the following:

Install and start Sqoop on the Trafodion cluster using either the Ambari or Cloudera Manager GUI. See the Sqoop

installation instructions.

Install JDK 1.8

Install the Oracle JDBC driver

Set the following environment variables:

export JAVA HOVE=/opt/javal/jdkl.8.0 11
export JAVA OPTI ONS=- Dmapred. chil d.java. opts=\-Dj ava. security. egd=file:/dev/urandomt+

4.4.2. Sample Sqgoop Commands

List All Oracle Tables

sqoop list-tables --driver oracle.jdbc. OracleDriver
--connect jdbc:oracle:thin: @O acle host nane>: <port >/ <dat abase>
--username <user-nane> --password <passwor d>

Import Data to Hive

Syntax

sqoop inport --connect jdbc:oracle:thin: @O acle host nane: port >/ <dat abase>
--username <user-nane> --password <password> --tabl e <tabl enane>

--split-by <col um-nanme> --hive-inport --create-hive-table
--hive-tabl e <hive-tabl e-nanme> --hive-overwite --null-string
--null-non-string '' --hive-drop-inport-delins--verbose

Parameter Guidelines

--split-by <col um- nanme> By default, if not specified, sqoop uses the primary key column as a
splitting column, which is not optimal most of the time. If the table does
not contain a primary key, then you must manually specify the splitting

column.
--null-string <null-string> This is the string to be written for a null value in a string column.
--null-non-string <null-string> This is the string to be written for a null value in a non-string column.

22 | Chapter 4. Bulk Load

http://sqoop.apache.org/docs/1.99.3/Installation.html
http://sqoop.apache.org/docs/1.99.3/Installation.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/database/features/jdbc/index-091264.html

Load and Transform Guide

Parameter Guidelines
- - hi ve-drop-inport-delins This drops \ n,\ r, and \ 01 string fields when importing to Hive.

NOTE: If the data contains \n or \r and if you do not use the hive-drop-
import-delims option, then data is truncated. You need to use additional
Sqgoop options during migration by specifying the delimiter that you
would like to use, which does not exist in the data itself.

4.4.3. Example

sqoop inport --connect jdbc:oracle:thin:@ocal host: 1521/ orcl
--usernane trafdenp --password traf123 --tabl e CUSTOVER
--split-by CUSTNUM --hive-inport --create-hive-table
--hive-table customers --hive-overwite --null-string "'
--null-non-string '" --hive-drop-inport-delins--verbose

Chapter 4. Bulk Load | 23

Load and Transform Guide

Chapter 5. Trickle Load

Trafodion Trickle Load allows data to be committed in batches, with sizes ranging from 1 row to a several thousand rows in
each commit. Trickle Load uses the following SQL statements (defined in the Trafodion SQL Reference Manual:

e INSERT

e UPSERT

« UPSERT USING LOAD

Contrary to Bulk Load, committed rows are immediately visible from other transactions thereby leading to minimal latency

in making newly ingested rows visible to applications and end users.
You use Trickle Load in the following situations:

* Inserting and/or updating data on an ongoing basis. Typically, you create a custom JDBC or ODBC application for this

approach.

 You want to migrate a smaller amount of data (a few millions rows). Typically, you use JDBC- or ODBC-based ETL

tools for this approach; for example:
* Trafodion odb*!
e SQuirrel-SQL
» Pentaho

¢ Informatica.

! Trafodion obd typically achieves better load throughput than third-party ETL tools.

5.1. Improving Throughput

Trickle Load uses the HBase write path, with every row being written to the WAL (Write-Ahead Log) and HBase

MemStore. When memstore is full data is flushed to HStorefile in background.
Throughput can be improved by use of:

* Rowsets or Batch Updates.
» UPSERT instead of INSERT statements, if applicable.

e Multiple simultaneous connections.

24 | Chapter 5. Trickle Load

http://trafodion.incubator.apache.org/docs/sql_reference/index.html
http://trafodion.incubator.apache.org/docs/sql_reference/index.html#insert_statement
http://trafodion.incubator.apache.org/docs/sql_reference/index.html#upsert_statement
http://trafodion.incubator.apache.org/docs/sql_reference/index.html#upsert_statement
http://squirrel-sql.sourceforge.net
http://www.pentaho.com/
http://www.informatica.com/us/

Load and Transform Guide

In addition, when using INSERT or UPSERT USING LOAD with the objective of maximizing data ingestion throughput,
increasing the HBase table attribute MEMSTORE_FLUSHSIZE from its default value helps.

The actual value you use depends on the heap size allocated to each Region Server, the concurrent query workload, and
the number of tables for which simultaneous fast data ingestion is needed. With a heap size of 31 GB for each Region

Server in an environment with heavy concurrent query workload, setting this attribute 1 GB gives good performance.

You can specify this attribute in the HBASE_OPTIONS clause when creating the table. Alternatively, you can also set it
from the hbase shel | through an ALTER ' TRAFCDI ON. <schena- nane>. <t abl e- nane>',
MEMSTORE _FLUSHSI ZE >= ' 1073741824' command.

5.2. odb

odb is a Linux and Windows Trafodion client that is:

* ODBC based
- Database agnostic query driver
e Query interpreter

» Loader and extractor
odb may be installed on:

» The Trafodion cluster.
* The machine that contains source data

» An intermediate machine that is being used for data loading.

Source data can be in any database (local or remote) that supports ODBC or in flat files local to the machine hosting the

odb tool.

odd uses threads to achieve parallelism, rowsets to improve throughput. You can specify INSERT, UPSERT or UPSERT
USING LOAD insert types.

odb does not use the bulk load command LOAD, and, therefore, throughput when using odb may be
0 lower than what can be achieved with the bulk loader. However, when using the odb tool, source data

need not be moved to the Trafodion cluster in a separate step.

odb allows you to access Hadoop data using one of the following methods:

Chapter 5. Trickle Load | 25

Load and Transform Guide

1. Use Hive and its ODBC Driver: odb can access HIVE like any other relational database. For example, you can copy

to from HIVE and other databases using odb’s copy option.

2. Add the hdfs." prefix to the input or output file during loads/extracts*: The file is read/written from/to Hadoop. odb

interacts directly with the HDFS file system using libhdfs.

This option is currently available only under Linux.

The following odb commands/features are discussed in this guide:

odb Load

» odb Copy

odb Extract

odb Transform
See the Trafodion odb User Guide for installation instructions and usage syntax for the odb tool.

The following subsections assume that you've installed odb.

5.2.1. odb Throughput

You achieve the best throughput with odb if using the UPSERT USING LOAD option.

The default insert type used by odb is INSERT; to use UPSERT USING LOAD, please specify : | oadcnd=UL in odb’s

| oad or copy command.
Example

Copy the table myt abl e from <sour ce_cat al og>. <sour ce_schena> on the source database to t r af odi on. ny

schema. myt abl e on Trafodion.

0db64l uo -u <src_username>: <t gt_usernane> -p <src_pswd>: <t gt_pswd>

-d <src_dsn>: <tgt_dsn>

-Ccp src:<source_catal og>. <source_schema>. nyt abl e tgt:trafodion. nyschenma. nytabl e
:splitby=<col - nane>: paral | el =4: | oadcnd=UL

Option Defines

Src_user nane User name for the source database.
src_pswd Password for the source database.
src_dsn ODBC DSN for the source database.

t gt _user nane User name for the Trafodion database.

26 | Chapter 5. Trickle Load

http://trafodion.incubator.apache.org/docs/odb/index.html

Load and Transform Guide

Option Defines

tgt_pswd Password for the Trafodion database.

tgt _dsn ODBC DSN for the Trafodion database.

splithy Defines the column used to evenly distributed values for parallelism. Consider using a
leading key column.

paral |l el =4 Use four connections to extract data from the source database and another four
connections to write data to the target Trafodion database.

| oadcmd=UL Use UPSERT USING LOAD syntax to write data.

5.2.2. odb Load

Refer to the Load Files section in the Trafodion odb User Guide for complete documentation of this option.

You use the -1 option to load into a table from:

File or standard input (pipe)

 gzip compressed files with no external dependencies

HDFS

Load XML files

Delimited and fixed format files

"Binary" files (example images)

Generic SQL scripts before/after loads
The -1 option provides:

» Data generation (constant, sequences, random values, from external datasets)

» Configurable rowsets

You can load single tables or list of tables in the same session using single/parallel threads. Limited "ETL like"
functionalities are provided; for example: SUBSTR, TRANSLITERATION, TRUNCATE target, DATE/TIME format
conversion, and TOUPPER.

Important Options

Option Defines

src Source file. If empty, then odb generates sample data.

fs Field separator.

t gt Target table, required.

map Map file. A text file describing which input column is mapped to which target table column.

See odb Transform below.

Chapter 5. Trickle Load | 27

http://trafodion.incubator.apache.org/docs/odb/index.html#_load_files
http://trafodion.incubator.apache.org/docs/odb/index.html

Load and Transform Guide

Option Defines

r ows Rowset size to be used.

paral | el Number of connections/threads to be used.”

| oadcnd I N, UP or UL. INSERT, UPSERT or UPSERT USING LOAD. Use UL for best throughput.
Example

$ odb64luo -u user -p xx -d dsn -1 src=custoner.tbl:tgt=TRAFODI ON. MAURI ZI O. CUSTOVER \
:fs=\|:rows=1000: | oadcnd=UL: truncat e: paral | el =4

This command:

* Loads the file named cust oner . t bl (src=cust oner. tbl)

* in the table TRAFODI ON. MAURI ZI O. CUSTOVER (t gt =TRAFCDI ON. MAURI ZI O. CUSTOVER)
* using | (vertical bar) as a field separator (f s=\|)

 using 1000 r ows as row-set buffer (r ows=1000)

 using UPSERT USING LOAD syntax to achieve better throughput

* truncating the target table before loading (t r uncat e)

e using 4 parallel threads toload the targettable (paral | el =4)

./ odb64luo -u xx -p yy -d traf _sqws125 -|

src=nyfile:fs=|:tgt=TRAFODI ON. SEABASE. REG ON: map=r egi on. map: max=10000: r ons=500: par al | el
=2: | oadcnd=UL

You can load multiple files using different - | options. By default odb creates as many threads (and ODBC connections) as

the sum of parallel load threads.

Example

Truncates and load the CUSTOMER, ORDERS and LINEITEM tables in parallel.

odb64l uo -u user -p xx -d dsn -T 5\

-l src=./data/ % .tbl.gz:tgt=TRAFODI ON. MAURO. CUSTOVER: f s=\
| :rows=nR:truncate: norb: parallel =4\

-l src=./data/ % .thl.gz:tgt=TRAFODI ON. MAURO. ORDERS: f s=\

| : rows=1000: truncat e: norb: paral | el =4 \

-1 src=./data/ % .tbl.gz:tgt=TRAFCDI ON. MAURO. LI NEI TEM f s=\
| : rows=mlO: truncat e: norb: paral | el =4

28 | Chapter 5. Trickle Load

Load and Transform Guide

5.2.3. odb Copy

Refer to the Copy Tables From One Database to Another section in the Trafodion odb User Guide for complete

documentation of this option.

Use the - cp option to copy tables directly from one data-source to another using ODBC (for example, from Trafodion to

Teradata or vice-versa):

Single/Multiple table(s) copy from one database to another

 Data never lands to disk (ODBC buffers moved from source to target)

Multi-threaded copy: single/multiple tables in parallel using single/multiple "data streams"/table

Each "data stream" consists of one "extractor" and one or more "loaders"

Table subsets copy (columns and/or rows)

* No data conversion required

 Other functionalities: sequence creation, limit text col length, max rows to copy, . . .

» Each data stream is "multiple buffered" with loaders and extractors working in parallel (no need to extract before
loading).

The target table has to be be created in advance and should have a compatible structure.

Important Options

Option Defines

src Source file. If empty, then odb generates sample data.

fs Field separator.

t gt Target table, required.

paral | el Number of connections/threads to be used.”

splitby Source column to parallelize copy operation on.

pwher e wher e condition on source

| oadcnd I N, UP or UL. INSERT, UPSERT or UPSERT USING LOAD. Use UL for best throughput.

When copying data from one data source to another, odb needs user/password/dsn for both source and target system.

User credentials and DSN for the target system are specified this way:

$ odb64luo -u src_user:tgt_user -p src_pwd:tgt:pwd -d src_dsn:tgt_dsn ... -cp
src=...:tgt=...

You can use odb to copy a list of tables from one database to another.

Chapter 5. Trickle Load | 29

http://trafodion.incubator.apache.org/docs/odb/index.html#_copy_tables_from_one_database_to_another
http://trafodion.incubator.apache.org/docs/odb/index.html

Load and Transform Guide

Example

$ cat tlist.txt

List of tables to extract

sr c=TRAFCDI ON. MAURI ZI O. ORDERS
src=TRAFCDI ON. MAURI ZI O. CUSTOVER
sr c=TRAFCODI ON. MAURI ZI O. PART
src=TRAFCDI ON. MAURI ZI O. LI NEI TEM

You can extract all these tables by running:

$ odb64l uo -u userl:user2 -p xx:yy -d dsnl:dsn2 \
-cp src=-tlist.txt:tgt=tpch.stg % :rows=nR:truncate: parallel =4

Please note the src=-tli st. t xt. This command copies:

Source Target

TRAFQODI ON. MAURI ZI O. ORDERS tpch. stg_orders
TRAFQODI ON. MAURI ZI O. CUSTOMVER t pch. st g_cust oner
TRAFODI ON. MAURI ZI O. PART tpch. stg_part
TRAFODI ON. MAURI ZI O. LI NEI TEM tpch.stg _lineitem

Optionally, you can define any other command-line options in the input file.
Example

Using different splitby columns.

$ cat tlist2. txt

List of tables to extract and their "splitby colums"
sr c=TRAFCDI ON. MAURI ZI O. ORDERS: spl i t by=0_ ORDERKEY

sr c=TRAFCODI ON. MAURI ZI O. CUSTOVER: spl i t by=C_CUSTOVERKEY
sr c=TRAFODI ON. MAURI ZI O. PART: spl i t by=P_PARTKEY

sr c=TRAFCDI ON. MAURI ZI O. LI NEI TEM spl i t by=L_PARTKEY

5.2.4. odb Extract

Refer to the Extract Tables section in the Trafodion odb User Guide for complete documentation of this option.
Use then -e option to extract from data a table and write it to standard files or named pipes.

You can:

30 | Chapter 5. Trickle Load

http://trafodion.incubator.apache.org/docs/odb/index.html#_extract_tables
http://trafodion.incubator.apache.org/docs/odb/index.html

Load and Transform Guide

Export single tables, list of tables or generic SQL output.

Export table subsets (columns and/or rows).

» Exports one or multiple tables in parallel using one or multiple data streams for each table

You can write the extracted data to:

Single/multiple files or standard output (pipe).

* gzip compressed files (no external libraries required).

Other useful features:

Important Options

Configurable rowset

Multi-threaded export

XML formatted files (no external libraries required).

Hadoop File System (requires libhdfs).

Configurable NULL/EMPTY strings, field/record separators

Possibility to run generic SQL scripts before/after extracts

Invoke other functionalities (trim, remote trim, cast, limit text col length, max rows to export,. . .)

Option Defines

src Source file. If empty, then odb generates sample data.
fs Field separator.

t gt Target table, required.

paral | el Number of connections/threads to be used.’
splitby Source column to parallelize extract operation on.
pwher e wher e condition on source

Example

$ odb64luo -u user -p xx -d dsn -T 3\
-e src=TRAFCDI ON. MAURI ZI O. LI N%% t gt =$\ { DATA}/ ext _% . csv. gz: rows=nl0: fs=\|:trimgzip: \
-e src=TRAFCDI ON. MAURI ZI O. REG ON: t gt =$\ { DATA}/ ext _% . csv. gz: rows=nil0: fs=\|:trimgzip \
-e src=TRAFODI ON. MAURI ZI O. NATI ON: t gt =$\ { DATA} / ext _% . csv. gz: rows=ml0: fs=\|:trimgzip

The example above:

Chapter 5. Trickle Load | 31

Load and Transform Guide

Extracts tables REG ON, NATI ON, and all tables starting with LI N from the TRAFODI ON. MAURI ZI Oschema.
e Saves data into files ext % . csv. gz (% is expanded to the real table name).

» Compresses the output file (gzip) on the fly (uncompressed data never lands to disk).

Trims text fields.

Uses a 10 MB 10 buffer.

Uses three threads (ODBC connection) for the extraction process.

Example

Use odb to extract all tables listed in a file.
$ cat tlist.txt
List of tables to extract src=TRAFODI ON. MAURI ZI O. ORDERS

sr c=TRAFCDI ON. MAURI ZI O. CUSTOVER sr c=TRAFCDI ON. MAURI ZI O. PART
src=TRAFCDI ON. MAURI ZI O. LI NEI TEM

Extract all these tables by running:

$ odb64luo -u user -p xx -d dsn -e src=-tlist.txt:tgt=%_%%mn r ows=nR0: sq=\"

The example above:

Reads the list of source tables fromt|i st.t xt.

Extracts the data into file using the table name in lowercase (%). appending extraction data and time (_ % %) for the

target file name.

Uses a 20MB I/O buffer for each extraction thread.

» Encloses strings with double-quote characters (sq=\").

5.2.5. odb Transform

Refer to the Map Source File Fields to Target Table Columns section in the Trafodion odb User Guide for complete

documentation of odb’s mapping/transformation capabilities.

odb provides mapping/transformation capabilities though mapfiles. By specifying map=<mapf i | e> load option you can:

» Associate any input file field to any table column

32 | Chapter 5. Trickle Load

http://trafodion.incubator.apache.org/docs/odb/index.html#load_map_fields
http://trafodion.incubator.apache.org/docs/odb/index.html

Load and Transform Guide

Skip input file fields
» Generate sequences

e Insert constants

Transform dates/timestamps formats

Extract substrings
* Replace input file strings. For example: insert Maurizio Felici when you read MF
» Generate random values

¢ And much more

A generic mapfile contains:

e Comments (line starting with #)

» Mappings to link input file fields to the corresponding target table columns.

Mappings use the following syntax:

<col name>: <fi el d>[:transfornmati on operator]

Example

Suppose you have a target table like this:

Fommman Femmmmmmmmmee—a T Femmmmmmmaaa +
| COLUMN| TYPE | NULL| DEFAULT| | NDEX |
oo - om e e mea oo . Fom e mee oo - +
[ID | INTEGER SIGNED | NO | | nf_pkey 1 U |
NAVE	CHAR(10)	YES		
AGE	SMALLI NT SI GNED	YES		
BDATE	DATE	YES		
Fommman Femmmmmmmmmee—a R Femmmmmmmaaa +

And an input file like this:

uno,00,51,due,Maurizio,tre,07 Mar 1959, ignore,remaining, fields
uno,00,46,due,Lucia,tre,13 Oct 1964, ignore, this
uno,00,34,due,Giovanni,tre,30 Mar 1976
uno,00,48,due,Antonella,tre,24 Apr 1962 *

Chapter 5. Trickle Load | 33

Load and Transform Guide

* Bold text represents age.
* Italics text represents name.
» Underline text represents birth date.

You want to load the marked fields into the appropriate column, generate a unique key for ID and ignore the remaining

fields, In addition, you need to convert the date format and replace all occurrences of Luci a with Lucy.

The following map file accomplishes these goals:

$ cat test/load _map/m 1. map +

Map file to | oad TRAFCDI ON. MFTEST. FRI ENDS from fri ends. dat

I D seq: 1 # Inserts into I D colum a sequence starting from1l

NANME: 4: REPLACE: Luci a: Lucy # Loads field #4 into NAVE and replace all occurrences of
Lucia with Lucy

AGE: 2 # Loads field #2 (they start fromzero) into AGE
BDATE: 6: DCONV: d. b. y # Loads field #6 into BDATE converting date format from dd
nmm yyyy

Load as follows:

$ odb64luo -u user -p xx -d dsn \
-1 src=friends. dat:tgt=TRAFODI ON. MFTEST. FRI ENDS: map=mni 1. map: f s=,

The above example:

Reads data from fri ends. dat (src).

Writes data to the TRAFODI ON. MFTEST. FRI ENDS Trafodion table (t gt).
* Uses m 1. map to define transformation specifications (map).

e Uses comma as a field separator (f s).

34 | Chapter 5. Trickle Load

Load and Transform Guide

Chapter 6. Bulk Unload

The UNLOAD statement is a Trafodion extension that exports data from Trafodion tables into an HDFS location that you

specify. Refer to the Trafodion SQL Reference Manual for complete documentation.

The extracted data can be either compressed or uncompressed based on what you choose. UNLOAD performs multiple

steps based on the options you give; for example:

« If using snapshot scan:
 Get list of Trafodion tables from the query plan.

 Create/verify snapshots.

 Purge target location, if specified
» Extract:
« Copy table data to data files.
« Non-compressed is straight copy.

* Compressed means compression takes place while writing data (no extra step)
* Merge Data Files if specified
Example

This example shows how the UNLOAD statement extracts data from a Trafodion table,

TRAFODI ON. HBASE. CUSTOVER _DEMOGRAPHI CS, into an HDFS folder, / bul kIl oad/ cust oner _denogr aphi cs:

>>UNLOAD
+>W TH PURGEDATA FROM TARGET
+>MERCE FI LE ' nerged_cust oner _denogs. gz' OVERWRI TE
+>COVPRESSI ON GZI P
+>| NTO ' / bul kl oad/ cust oner _denogr aphi cs'
+>SELECT * FROM tr af odi on. hbase. cust oner _denogr aphi cs
+><<+ cardinality 10el0 ,+ cardinality 10el0 >>;
Task: UNLOAD Status: Started
Task: EMPTY TARGET Status: Started
Task: EMPTY TARGET Status: Ended ET: 00:00: 00.014
Task: EXTRACT Status: Started

Rows Processed: 200000
Task: EXTRACT Status: Ended ET: 00:00:04. 743 Task: MERGE FILES Status: Started
Task: NMERCE FILES Status: Ended ET: 00:00: 00. 063

--- 200000 row(s) unl oaded.

Chapter 6. Bulk Unload | 35

http://trafodion.incubator.apache.org/docs/sql_reference/index.html#unload_statement
http://trafodion.incubator.apache.org/docs/sql_reference/index.html#unload_statement

Load and Transform Guide
Chapter 7. Monitor Progress

7.1. INSERT and UPSERT

For an INSERT statement, rows are written to the HBase table that represents the Trafodion table when the transaction

commits. It is more difficult to see query progress here.

7.2. UPSERT USING LOAD

For an UPSERT USING LOAD statement, rows added are visible in the Trafodion table after each Li st Of Put call
succeeds. You can use a SELECT COUNT(*) statement to monitor progress. That way, you know how many rows are

already in the table when the statement starts executing.

SELECT COUNT(*) FROM trafodion.sch. deno ;

7.3. LOAD

For LOAD, query progress goes through a few phases, which sometimes overlap:

1. Hive scan.
2. Sort.
3. Create prep HFiles in HDFS bulkload staging directory (/ bul kIl oad by default).

4. Move HFiles into HBase.

You can monitor progress in step 2, sort, with this shell command:
| sof +L1 | grep SCR| wc -|

This command returns a count of the number of overflow files for sort. Each file is 2GB in size. You need to have an
approximate idea of the volume of data being loaded to know how much more data needs to be sorted. On a cluster, sort
is done on all nodes with a pdsh-like utility. Trafodion data volume can also be larger than Hive data volume by a factor of

2 or3.

In step 3, create prep HFiles, use the following command to monitor the volume of data written out to the staging directory:

36 | Chapter 7. Monitor Progress

Load and Transform Guide

hadoop fs -dus /bul kl oad

The hadoop fs command must be run from one node and does not have to be repeated across the cluster.

If compression and encoding are used, then the size should be similar to the Hive source data volume. There may be
some remnant data in the staging directory from previous commands, so we have to take that into account. This step will

start only when sort has completed.

Step 4 is usually the shortest and typically does not exceed a few minutes.

Chapter 7. Monitor Progress | 37

Load and Transform Guide

Chapter 8. Troubleshoot

8.1. Improving Throughput

8.1.1. Tuplelists or Rowsets

When Tuplelists or Rowsets are used as the data source, performance typically increases with the number of rows in the
Tuplelist or Rowset. Performance peaks at some value for the number of rows and remain more or less steady after that.

This peak value depends on row size. Typically a value in the range of 100 to few thousand is reasonable.

8.1.2. Native HBase Tables

When native HBase tables are used as the data source, it is important to override the default value for the attribute
HBASE_MAX_COLUMN_VALUE_LENGTH (columnwise mode) or HBASE_MAX_COLUMN_INFO_LENGTH (rowwise

mode) and set the value to the maximum for the table being used as the source. The default values may be too large.

8.1.3. Hive Tables

When Hive tables are used as the data source, it is important to override the default value for the attribute
HIVE_MAX_STRING_LENGTH when the Hive source table has columns of type string. Please set the value to the length

of the longest string in the Hive table.

To determine that length, run this query from a Hive shell:
SELECT MAX(LENGTH(<col - name>)) FROM <hi ve-t ab- nanme>;

If the query returns a value less than the current HIVE_MAX_STRING_LENGTH, then you need to increase that value
and retry. If the query returns a value that is far less than the current HIVE_MAX_STRING_LENGTH, then you can
achieve better performance by reducing the value. An approximate value can be used, too. The Trafodion default of 32000

may be too generous in some cases.

8.2. Checking Plan Quality

It is good practice to check the quality of the plan generated by the SQL compiler before executing a data loading

statement that may take a long time to complete.

38 | Chapter 8. Troubleshoot

Load and Transform Guide

* For INSERT and UPSERT USING LOAD statements, use the EXPLAIN statement, which is described in the Trafodion

SQL Reference Manual.

 For the LOAD statement, which is implemented as a utility operator (that is, a collection of secondary SQL

statements), use the following SQL statements to see the plan that it uses to add data to the target table:

CONTROL QUERY DEFAULT COVP_BOOL 226 'ON
PREPARE s1 FROM LOAD TRANSFORM | NTO <t ar get -t abl e> <sel ect - quer y- used- as- source> ;
EXPLAIN OPTIONS 'f' s1 ;

A typical problem with the plan is that the scan is not parallel enough. For Trafodion tables, you can address this issue with
the default attribute, PARALLEL_NUM_ESPS. Using this attribute, a Trafodion scan can be parallelized to as many
number of SALT partitions that are defined for the table. For Hive source tables, the default attributes,
HIVE_NUM_ESPS_PER_DATANODE and HIVE_MIN_BYTES_PER_ESP_PARTITION, can be used to adjust the degree

of parallelism.

8.3. UPDATE STATISTICS Times Out During Sampling

Sampling in update statistics is implemented using the HBase Random RowtFilter. For very large tables with several billion
rows, the sampling ratio required to get a sample of one million rows is very small. This can result in HBase client

connection timeout errors since there may be no row returned by a RegionServer for an extended period of time.

You can avoid this problem by:

Choosing a sampling percentage higher than the default setting of 1 million rows for large tables.

For example, suppose table T has one billion rows. Use the following UPDATE STATISTICS statement to sample a

million rows, or approximately one-tenth of one percent of the total rows:

UPDATE STATI STICS FOR TABLE t ON EVERY COLUWMN SAMPLE;

To sample one percent of the rows, regardless of the table size, you must explicitly state the sampling rate as follows:

UPDATE STATI STI CS FOR TABLE t ON EVERY COLUWN SAMPLE RANDOM 1 PERCENT;

» Setting hbase. rpc. ti neout to a higher value than currently specified in the HBase settings.

Chapter 8. Troubleshoot | 39

http://trafodion.incubator.apache.org/docs/sql_reference/index.html#explain_statement
http://trafodion.incubator.apache.org/docs/sql_reference/index.html#explain_statement

Load and Transform Guide

8.4. Index Creation Takes Too Long

When creating an index, all rows of the Trafodion table must be scanned and a subset of columns is returned to the client.
This can take a while to complete. If there is a Hive table with the same data as the Trafodion table being scanned, then

you can specify the default attribute, USE_HIVE_SOURCE. This causes the Hive table to be used as the source creating

the index.
The name of the Hive table must use the Trafodion table name as its prefix. For example, if the
0 Trafodion table is TRAFODION.SCH.DEMO, then the Hive table name can be DEMO_SRC. In this
case, set the attribute as follows:

CONTRCL QUERY DEFAULT USE_HI VE_SOURCE ' _SRC ;
CREATE | NDEX deno_i x ON sch. deno(nane) ;

8.5. Large Deletes Take Too Long or Error Out

If a large number of rows is either updated or deleted in a single SQL statement, then it is likely that the statement does

not complete successfully.

Deleting or updating more than 10,000 rows with a single statement is not recommended. Instead, a large delete or
update should be broken up into multiple statements each affecting less than 10,000*n rows, if possible. n is number of

nodes in the cluster.

8.6. Large UPSERT USING LOAD On a Table With Index Errors Out

UPSERT USING LOAD automatically reverts to a transactional UPSERT when used on a table with an index. This causes
Trafodion to run into the limitation discusses in Large Deletes Take Too Long or Error Out above: no more than 10,000*n

rows (n = number of nodes) can be affected in a single statement.

Workaround: The UPSERT USING LOAD operation can be placed in a LOAD statement as shown below. The LOAD
statement disables indexes on the table before the UPSERT USING LOAD starts. Once the UPSERT USING LOAD

completes indexes are populated by the LOAD statement.

40 | Chapter 8. Troubleshoot

Load and Transform Guide

LOAD W TH UPSERT USI NG LOAD | NTO tr af odi on. sch. deno SELECT * FROM hi ve. hi ve. denp;

Task:
Task:
Task:
Task:

Task:
Task:
Task:

LCAD
DI SABLE | NDEXE
DI SABLE | NDEXE
UPSERT USI NG L

Rows Processed:

UPSERT USI NG L
POPULATE | NDEX
POPULATE | NDEX

St at us:
St at us:
St at us:
St at us:

200000

St at us:
St at us:
St at us:

Started
Started
Ended

Started

Ended
Started
Ended

bj ect:
bj ect :
bj ect:
bj ect:

TRAFCDI ON. SCH. DEMO
TRAFCDI ON. SCH. DEMO
TRAFCDI ON. SCH. DEMO
TRAFCDI ON. SCH. DEMO

ET: 00:01:03. 715

bj ect:

TRAFCDI ON. SCH. DEMO

ET: 00:08:11. 323

Chapter 8. Troubleshoot | 41

	Load and Transform Guide
	Table of Contents
	Chapter 1. About This Document
	1.1. Intended Audience
	1.2. New and Changed Information
	1.3. Notation Conventions
	1.4. Comments Encouraged

	Chapter 2. Introduction
	2.1. Load Methods
	2.1.1. Insert Types

	2.2. Unload

	Chapter 3. Tables and Indexes
	3.1. Choose Primary Key
	3.2. Salting
	3.3. Compression and Encoding
	3.4. Create Tables and Indexes
	3.5. Update Statistics
	3.5.1. Default Sampling

	3.6. Generate Single-Column and Multi-Column Histograms From One Statement
	3.6.1. Enable Update Statistics Automation
	3.6.2. Regenerate Histograms

	Chapter 4. Bulk Load
	4.1. Load Data From Trafodion Tables
	4.1.1. Example

	4.2. Load Data From HDFS Files
	4.2.1. Example

	4.3. Load Data From Hive Tables
	4.3.1. Example

	4.4. Load Data From External Databases
	4.4.1. Install Required Software
	4.4.2. Sample Sqoop Commands
	4.4.3. Example

	Chapter 5. Trickle Load
	5.1. Improving Throughput
	5.2. odb
	5.2.1. odb Throughput
	5.2.2. odb Load
	5.2.3. odb Copy
	5.2.4. odb Extract
	5.2.5. odb Transform

	Chapter 6. Bulk Unload
	Chapter 7. Monitor Progress
	7.1. INSERT and UPSERT
	7.2. UPSERT USING LOAD
	7.3. LOAD

	Chapter 8. Troubleshoot
	8.1. Improving Throughput
	8.1.1. Tuplelists or Rowsets
	8.1.2. Native HBase Tables
	8.1.3. Hive Tables

	8.2. Checking Plan Quality
	8.3. UPDATE STATISTICS Times Out During Sampling
	8.4. Index Creation Takes Too Long
	8.5. Large Deletes Take Too Long or Error Out
	8.6. Large UPSERT USING LOAD On a Table With Index Errors Out

