JDBC Type 4 Programmer’s
Reference Guide

Table of Contents

1. About ThisS DOCUMENT . .o oo e e et e e e e e e e e e e 5
1.1, Intended AUIENCE 5
1.2. New and Changed Information e e e 5
1.3. NOtation CONVENTIONSottt e e e e e e 5
1.4. CommeENtS ENCOUNAgETottt e e e e e e e e e 9

2. INtrOTUCHION . o o o 10
2.1. Type 4 Driver APl Package 10
2. 2. InStallatioN 10

3. Accessing Trafodion SQL Databases i e e e 11
3L DAl SOUICES . . . ettt e e 11

3.1.1. JDBC Data Source (Client-sSide) 11
B2 S CUIIEY o . ettt 11
3.3. Connection by Using the DataSource Interface e 12

3.3.1. Overview of Tasks to Deploy DataSource ObJEeCtS e 12

3.3.2. DataSource ObjeCt PropertieSot e e e 13

3.3.3. Programmatically Creating an Instance of the DataSource Class i, 13

3.3.4. Programmatically Registering the DataSource Object i 14

3.3.5. Retrieving a DataSource Instance by Using JNDI and Connecting to the Data Source 14

3.3.6. Specifying the Properties File that Configures the Data Source i, 15
3.4. Connection by Using the DriverManager Class e 15

3.4.1. Loading and Registering the DriVer e e e 16

3.4.2. Establishing the Connection e e e e 17

3.4.3. Guidelines for Connections Using the Driver Managert 17
3.5. CoNNECtioN POOIINGo 19
3.6. Statement POOINGo 20

3.6.1. Guidelines for Statement PooliNg oo 20

3.6.2. Troubleshooting Statement POOIING e 20
3.7. Thread-Safe Database ACCESSt e 21
3.8."Update . . . Where Current of" Operationst 21
3.9. INFOSTATS Command for Obtaining QUEery COSESttt e 22

3.9.1. Use of the INFOSTATS COmMMAaNdttt et e e e e e e e e 23
3.10. Internationalization SUPPOItt 25

3.10.1. When String Literals Are Used in Applications e 25

3.10.2. Controlling String Literal Conversion by Using the Character-Set Properties 25

3.10.3. Localizing Error Messages and Status MeSSageSo oottt it i e 28

4. TYPE 4 DIVl PrOPertiES . . ot 30

4.1. Summary of Type 4 Driver Properties o 30
4.1.1. Client-Side Properties 30
4.1.2. Server-Side Properties e 32

4.2. How to Specify JDBC Type 4 Properties i e e e e 32

4.2.1. Where 10 Set Propertieso e 33

4.2.2. Creating and Using a Properties File 33

4.2.3. Setting Properties inthe Command LinNe i e e 34
4.2.4. Precedence of Property Specifications e e 34

5. Type 4 Driver Property DeSCIIPLONS ottt e e e e e 35
B L. catalog PrOPertY . oo 35
5.2. connectionTimeOUL PrOPEITYot e e e 36
5.3. fetchBUfferSize Property 37
5.4, INitialPO0ISIZE Property . ..o e e 38
DD, ISO8B859L PrO eIy . vttt e e 39
5.6, KANI PrO eIy . . e 40
5. 7. KS B0 PrOPeItY . .ottt e 41
5.8, langUAgE PrO eIty . o 42
5.9, 10giNTIMEOUL PrOPeItY . . o oot 43
5.10. maxIdleTime Property o e e 44
5.11. MaXPOOISIZE PropeItY . .o e e e 45
5. 12, maxStatemMeENtS PrOPeItY . . o e 46
5.13. MINPO0ISIZE PrO eIty . o o 47
5.14. networkTimeEOUL PrOPEITY . . . oo e e e 48
5,15, PaSSWOId PrO eIty . . oot e 49
5,16, PrOPErtiES PrOPE Y . .ottt e e 49
5.17. reserveDatalocators PrOPertYot e 50
5.18. roundingMode Property . ..o 51
5.19. SChEMaA ProPertY . . .o 52
5.20. TALOGFIle Property . . .o 53
5.2, TALOgLeVEl PropertY . oo 55
5.21.1. T4LogLevel Considerationsttt e 56
5.22. translationVerification Property e e 57
D28 U PrOPEIY . o 58
5.23.1. url Property ConSiderations 58

D 24, USEY PrOPI Y . . 59
6. Type 4 Driver CompPlianCeo 60
6.1. ComplianCe OVeIVIEW e e 60
6.2. UNSUppPOorted FEatUIES e 60
B.3. DVIAtiONS . . e 62
6.4. Trafodion EXIENSIONS 64
6.4.1. Internationalization Of MESSAgESottt 64
6.4.2. Additional DatabaseMetaData APIS 64
6.5. Conformance of DatabaseMetaData Methods' Handling of Null Parameters 64
6.6. Type 4 Driver Conformance to SQL Data TYPES .. .ottt e e e 66
6.6.1. IDBC Data TYPES . . o oottt et e 66
6.7. Floating-Point SUPPOITo 67
6.8, SQLT SUPPOI . .o 67
6.9. JDBC 3.0 Features Not Supported by the Type 4 Driver e 68

B.10. RESIICHIONS e 68

7. Tracing and Logging Facilities 69

7.1. Standard JDBC Tracing and Logging Facility 69
7.2. The Type 4 Driver Logging Facility e e e e 70
7.2.1. Controlling Type 4 Driver Logging OUIPUL oot 70
7.2.2. MeSsage FOrmat 71
7.2.3. Examples of Logging OULPULttt e e e 72

8. MBS SO . . o oo 73
8.1. About the Message FOrmat i e e e 73
8.2. Getting Help ..o e e 73
8.3. TYPE 4 DriVEr EITOr MESSAUES . . . ittt ettt e e e e e e e e 73
8.3.1. 01032 08S 0L . ..ttt 73
8.3.2. 01056 25000 . . .ttt 73
8.3.3. 01118 SA008 . . .ttt 74
8.3.4. 08001 HYOO00 . ..ottt et e e 74
8.3.5. 08004 HYOO00 . ..ottt 74
8.3.6. 29001 HYCO0 . ..ottt e e e 75
8.3.7. 29002 08003 . ..t 75
8.3.8. 29003 HY OO0 . ..ottt it 75
8.3.9. 29004 HY 024 . . . 76
8.3.10. 29005 HY 024 . .o i 76
8.3.11. 29006 HYO00 . ..ttt et 76
8.3.12. 29007 07000 . .ottt 77
8.3.13. 29008 24000 . ..ttt 77
8.3.14. 29009 HY 100 . .. ittt 77
8.3.15. 29010 07009 . .ottt 78
8.3.16. 29011 07009 . .ottt 78
8.3.17.29012 07006 . .o ottt et 78
8.3.18. 20018 HY D24 . .. i 79
8.3.10. 20015 HY D24 . .o 79
8.3.20. 29017 HY 004 . .ttt 79
8.3.21. 29018 22018 . .. it 80
8.3.22. 29019 07002 . . oottt 80
8.3.23. 29020 07000 . .ot 80
8.3.24. 20021 HY 004 . .. ittt 81
8.3.25. 29022 HYOL0 ..ottt it e 81
8.3.26. 29026 HYO00ttt it e 81
8.3.27. 20027 HY DL L .. 82
8.3.28. 20020 HY DL L ..ot 82
8.3.29. 2903 L HYO00 . .ottt it e 82
8.3.30. 29032 23000 . ..t 83
8.3.31. 29033 23000 . .t it 83
8.3.32. 29035 HY D00 . ..ttt ittt e 83
8.3.33. 29036 HY OO0 . ..ttt 84

8.3.34.

20037 HY 06 ... 84

8.3.35.
8.3.36.
8.3.37.
8.3.38.
8.3.39.
8.3.40.
8.3.41.
8.3.42.
8.3.43.
8.3.44.
8.3.45.
8.3.46.
8.3.47.
8.3.48.
8.3.49.
8.3.50.
8.3.51.
8.3.52.
8.3.53.
8.3.54.
8.3.55.
8.3.56.
8.3.57.
8.3.58.
8.3.59.
8.3.60.
8.3.61.
8.3.62.
8.3.63.
8.3.64.
8.3.65.
8.3.66.
8.3.67.
8.3.68.
8.3.69.
8.3.70.
8.3.71.
8.3.72.
8.3.73.
8.3.74.
8.3.75.
8.3.76.
8.3.77.
8.3.78.

29038 HY 107 . .. 84
29080 HY 002 . .. 85
29040 HY OO0 . .ttt 85
29041 HYOO00 . ..ttt 85
29042 HYOO00 . ..ttt 86
29043 HYOO00 . ..ttt 86
29044 HYOO00 . ..ot 86
20045 001807 . 87
20046 22003 ... 87
29047 HYOO00 . ..ttt 87
20048 HY 00 . .. 88
29049 25000 ... 88
29050 HY L07 . .. 88
20051 001802 ... 89
29053 HY OO0 . ..ottt 89
29054 HY OO0 . ..ttt 89
29056 HYOO00 . ..ottt 90
29057 HYOO00 . ..ot 90
29058 HYOO0O . ..ottt 90
29059 HYOO00 . ..ot 91
29060 HYO0O0ottt 91
20061 HY OO ...ttt 91
20063 HY OO ... 92
29067 07009 ... 92
29068 07009 ... 92
29069 HYOO00 . ..ottt 93
29100 HYOO0O0ttt 93
29101 HYOO0O0 . .ottt ettt 93
29102 HYOO00 . ..ottt e 94
29103 HYOO00 . ..ttt 94
29104 HYOO00 . ..ot 94
20105 HYO00 ...ttt 95
29106 HYO0O0 . ..ttt 95
29107 HYOO00 . ..ttt 95
29108 HYOO00 . ..ottt 96
29109 HYOO00 . ..ottt 96
291T10 HYOO0O . ..ttt 96
20111 HYOOO ..ot e 97
20102 HYOO0O . .ttt 97
20113 HYOO00 . .ottt 97
20114 HYOO00 ..ottt 98
20115 HYOO00 ...ttt 98
20116 HYOOO . ..o 98
20017 HYOO0 ... 99

8.3.79. 29118 HYOO00o 99
8.3.80. 29119 HYOO00 o 99
8.3.81. 29120 HYOO00ottt 100
8.3.82. 29121 HYOO00 . . . oot 100
8.3.83. 29122 HYOO00ottt 100
8.3.84. 29123 HYOO00ot 101
8.3.85. 29124 HYOO00 i 101
8.3.86. 29125 HYOO00 101
8.3.87. 29126 HYO00 i 102
8.3.88. 29127 HYOO00o 102
8.3.89. 29128 HYOO00 oot 102
8.3.90. 29129 HYOO00ot 103
8.3.91. 29130 HYOO00o 103
8.3.92. 29131 HYOO00 i 103
8.3.93. 29132 HYO00ot 104
8.3.94. 29133 HYO00ottt 104
8.3.95. 29134 HYOO00ot 104
8.3.96. 29135 HYO00o 105
8.3.97. 29136 HYO00 105
8.3.98. 29137 HYO00 105
8.3.99. 29138 HYO00 it 106
8.3.100. 29139 HY D00ot 106
8.3.101. 29140 HYO00 . . . oot 106
8.3.102. 29141 HYO00ot 107
8.3.103. 29142 HYOO00o 107
8.3.104. 29143 HY OO0 i 107
8.3.105. 29144 HYO00 . . . oottt 108
8.3.106. 29145 HYO00ot 108
8.3.107. 29146 HYO00 . ..o 108
8.3.108. 29147 HYOO00ot 109
8.3.109. 29148 HYO00o 109
8.3.110. 29149 HYO00o 109
8.3.111. 29150 HYOO00 . . . oottt 110
8.3.112. 29151 HYOO00 . . . oo 110
8.3.113. 29152 HYOO00ot 110
8.3.114. 29153 HY OO0ot 111
8.3.115. 29154 HYO00o 111
8.3.116. 29155 HY OO0o 111
8.3.117. 29156 HYOO00ot 112
8.3.118. 29157 HYOO00o 112
8.3.119. 29158 HY OO0ot e 112
8.3.120. 29159 HY D00o 113
8.3.121. 29160 HYOO00o 113

8.3.122.

29161 S1000 ... 113

8.3.123. 29162 S1000 . . .ttt 114
8.3.124. 29163 0800L . . .ttt 114
8.3.125. 29164 08001 . . .ot 114
8.3.126. 29165 HYO00ttt 115
8.3.127. 29166 HYO00ttt ittt e e 115
8.3.128. 29167 HYOO00 ..\ttt ittt e e 115
8.3.129. 29168 HYO00 . . .ottt 116
8.3.130. 29169 HY OO0 . . .ottt 116
8.3.131. 29170 HYOO00 . ..ttt 116
8.3.132. 29172 HYO00 . ..ottt 117
8.3.133. 29173 HYOO00 ..o\ttt ettt e e e 117
8.3.134. 29174 HYO00 ...ttt 117
8.3.135. 29175 HYO00 . ..ottt 118
8.3.136. 29177 HYOO00 . . .ottt 118
8.3.137. 29178 HYO00 . . .ottt 118
8.3.138. 29182 HYO00 .. .\ttt et e 119
8.3.139. S1000 HY D00 ..\ttt ittt e e e e e e 119

9. Avoiding Driver-Server Version MismatCh 120
9.1, Compatible VersSioNS 120
9.2. Considerations for Mixed-Version JDBC Clients Connecting to Trafodion Platforms 120

9.3. Version MismatCh Error MESSageottt e e e e e 121

JDBC Type 4 Programmer’s Reference Guide

License Statement

Licensed to the Apache Software Foundation (ASF) under one or more contributor license
agreements. See the NOTICE file distributed with this work for additional information
regarding copyright ownership. The ASF licenses this file to you under the Apache
License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the
License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS
OF ANY KIND, either express or implied. See the License for the specific language

governing permissions and limitations under the License.

Preface | 1

http://www.apache.org/licenses/LICENSE-2.0

JDBC Type 4 Programmer’s Reference Guide

Acknowledgements

Microsoft®, Windows®, Windows NT®, Windows® XP, and Windows Vista® are U.S.
registered trademarks of Microsoft Corporation. Intel® and Intel® Itanium® are
trademarks of Intel Corporation in the U.S. and other countries. Java® is a registered
trademark of Oracle and/or its affiliates. Motif, OSF/1, UNIX®, X/Open®, and the X device

Is a trademark of X/Open Company Ltd. in the UK and other countries.

OSF, OSF/1, OSF/Motif, Motif, and Open Software Foundation are trademarks of the Open
Software Foundation in the U.S. and other countries. © 1990, 1991, 1992, 1993 Open

Software Foundation, Inc.

The OSF documentation and the OSF software to which it relates are derived in part from
materials supplied by the following: © 1987, 1988, 1989 Carnegie-Mellon University. ©
1989, 1990, 1991 Digital Equipment Corporation. © 1985, 1988, 1989, 1990 Encore
Computer Corporation. © 1988 Free Software Foundation, Inc. © 1987, 1988, 1989, 1990,
1991 Hewlett-Packard Company. © 1985, 1987, 1988, 1989, 1990, 1991, 1992
International Business Machines Corporation. © 1988, 1989 Massachusetts Institute of
Technology. © 1988, 1989, 1990 Mentat Inc. © 1988 Microsoft Corporation. © 1987, 1988,
1989, 1990, 1991, 1992 SecureWare, Inc. © 1990, 1991 Siemens Nixdorf Informations
systeme AG. © 1986, 1989, 1996, 1997 Sun Microsystems, Inc. © 1989, 1990, 1991

Transarc Corporation.

OSF software and documentation are based in part on the Fourth Berkeley Software
Distribution under license from The Regents of the University of California. OSF
acknowledges the following individuals and institutions for their role in its development:
Kenneth C.R.C. Arnold, Gregory S. Couch, Conrad C. Huang, Ed James, Symmetric
Computer Systems, Robert Elz. © 1980, 1981, 1982, 1983, 1985, 1986, 1987, 1988, 1989
Regents of the University of California. OSF MAKES NO WARRANTY OF ANY KIND

2 | Preface

JDBC Type 4 Programmer’s Reference Guide

WITH REGARD TO THE OSF MATERIAL PROVIDED HEREIN, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE. OSF shall not be liable for errors contained herein or for
incidental consequential damages in connection with the furnishing, performance, or use

of this material.

Preface | 3

JDBC Type 4 Programmer’s Reference Guide

Revision History

Version Date

2.2.0 TBD

2.1.0 May 1, 2017
2.0.1 July 7, 2016
2.0.0 June 6, 2016
1.3.0 January, 2016

4 | Preface

JDBC Type 4 Programmer’s Reference Guide

Chapter 1. About This Document

This document describes how to use the Trafodion JDBC Type 4 Driver (subsequently called the Type 4 driver). This driver

provides Java applications running on a foreign platform with JDBC access to Trafodion.

1.1. Intended Audience

This Trafodion JDBC Type 4 Driver Programmer’s Reference Guide is for experienced Java programmers who want to

access Trafodion SQL databases.

This document assumes you are already familiar with the Java documentation, which is located at

http://docs.oracle.com/en/java/.

1.2. New and Changed Information

This is a new manual.

1.3. Notation Conventions

This list summarizes the notation conventions for syntax presentation in this manual.
 UPPERCASE LETTERS

Uppercase letters indicate keywords and reserved words. Type these items exactly as shown. Items not enclosed in

brackets are required.
SELECT

 lowercase letters

Lowercase letters, regardless of font, indicate variable items that you supply. Items not enclosed in brackets are

required.

file-nanme

Chapter 1. About This Document | 5

http://docs.oracle.com/en/java/

JDBC Type 4 Programmer’s Reference Guide

e [] Brackets

Brackets enclose optional syntax items.

DATETI ME [start-field TQ end-field

A group of items enclosed in brackets is a list from which you can choose one item or none.

The items in the list can be arranged either vertically, with aligned brackets on each side of the list, or horizontally,

enclosed in a pair of brackets and separated by vertical lines.

For example:

DROP SCHENMA schema [CASCADE]
DROP SCHEMA schema [CASCADE | RESTRICT]

» {} Braces

Braces enclose required syntax items.

FROM { grantee [, grantee] ... }

A group of items enclosed in braces is a list from which you are required to choose one item.

The items in the list can be arranged either vertically, with aligned braces on each side of the list, or horizontally,

enclosed in a pair of braces and separated by vertical lines.

For example:

I NTERVAL { start-field TO end-field }
{ single-field }
I NTERVAL { start-field TO end-field | single-field }

* | Vertical Line

A vertical line separates alternatives in a horizontal list that is enclosed in brackets or braces.

{expression | NULL}

6 | Chapter 1. About This Document

JDBC Type 4 Programmer’s Reference Guide

... Ellipsis

An ellipsis immediately following a pair of brackets or braces indicates that you can repeat the enclosed sequence of

syntax items any number of times.

ATTRIBUTE[S] attribute [, attribute]
{, sql-expression }

An ellipsis immediately following a single syntax item indicates that you can repeat that syntax item any number of

times.

For example:

expression-n ...

Punctuation

Parentheses, commas, semicolons, and other symbols not previously described must be typed as shown.

DAY (dateti nme-expression)
@cript-file

Quotation marks around a symbol such as a bracket or brace indicate the symbol is a required character that you must

type as shown.

For example:

“{" nodul e-nane [, nodul e-nanme] ... "}"

Chapter 1. About This Document | 7

JDBC Type 4 Programmer’s Reference Guide

* Item Spacing

Spaces shown between items are required unless one of the items is a punctuation symbol such as a parenthesis or a

comma.

DAY (datetine-expression) DAY(datetine-expression)

If there is no space between two items, spaces are not permitted. In this example, no spaces are permitted between

the period and any other items:

nyfile.sh

* Line Spacing

If the syntax of a command is too long to fit on a single line, each continuation line is indented three spaces and is

separated from the preceding line by a blank line.

This spacing distinguishes items in a continuation line from items in a vertical list of selections.

mat ch-val ue [NOT] LIKE _pattern
[ESCAPE esc- char - expressi on]

8 | Chapter 1. About This Document

JDBC Type 4 Programmer’s Reference Guide

1.4. Comments Encouraged

We encourage your comments concerning this document. We are committed to providing documentation that meets your

needs. Send any errors found, suggestions for improvement, or compliments to user@trafodion.apache.org.

Include the document title and any comment, error found, or suggestion for improvement you have concerning this

document.

Chapter 1. About This Document | 9

mailto:user@trafodion.apache.org

JDBC Type 4 Programmer’s Reference Guide

Chapter 2. Introduction

This document describes how to use the Trafodion JDBC Type 4 Driver. This driver provides Java applications running on

a foreign platform with JDBC access to Trafodion SQL databases on the Trafodion.

Supported Java Releases: The Type 4 driver requires Java enabled platforms that support JDK 1.7 or higher.

2.1. Type 4 Driver APl Package

The Type 4 driver package, or g. t r af odi on. j dbc. t 4, is shipped with the driver software. For class and method

descriptions, see the Trafodion JDBC Type 4 Driver AP| Reference.

The Trafodion JDBC Type 4 Driver (hereafter, Type 4 driver) implements JDBC technology that conforms to the standard
JDBC 3.0 Data Access API.

To obtain detailed information on the standard JDBC API, download the JDBC API documentation:

http://docs.oracle.com/en/java/.

2.2. Installation

Refer to the Trafodion Client Installation Guide.

10 | Chapter 2. Introduction

http://docs.oracle.com/en/java/
http://trafodion.apache.org/docs/client_install/index.html

JDBC Type 4 Programmer’s Reference Guide

Chapter 3. Accessing Trafodion SQL Databases

3.1. Data Sources

The term data source logically refers to a database or other data storage entity. A JDBC (client) data source is physically
a Java object that contains properties such as the URL of the physical database, the catalog to use when connecting to
this database, and the schema to use when connecting to this database. The JDBC data source also contains methods

for obtaining a JDBC connection to the underlying database.

3.1.1. JDBC Data Source (client-side)

All JDBC data source classes implement either the j avax. sql . Dat aSour ce interface or the

j avax. sql . Connecti onPool Dat aSour ce interface. The Type 4 driver data source classes are

org. trafodion.jdbc.t4. Traf T4Dat aSour ce and

org.trafodion.jdbc.t4. Traf T4Connect i onPool Dat aSour ce. (These classes are defined by the JDBC 3.0

specification.)

Typically, a user or system administrator uses a tool to create a data source, and then registers the data source by using a
JNDI service provider. At run time, a user application typically retrieves the data source through JNDI, and uses the data

source’s methods to establish a connection to the underlying database.

A DataSource object maps to an instance of a database. In the Type 4 driver product, the DataSource object acts as an
interface between the application code and the database and enables connection with a DCS (Data Connectivity

Services) data source.

3.2. Security

Clients connect to the Trafodion platform with a valid user name and password, using standard JDBC 3.0 APIs. An

application can make multiple connections using different user IDs, and creating different Connection objects.

The Type 4 driver provides for user name and password authentication. The password is encrypted.

Chapter 3. Accessing Trafodion SQL Databases | 11

JDBC Type 4 Programmer’s Reference Guide

3.3. Connection by Using the DataSource Interface

The j avax. sql . Dat aSour ce interface is the preferred way to establish a connection to the database because this
interface enhances the application portability. Portability is achieved by allowing the application to use a logical name for a
data source instead of providing driver-specific information in the application. A logical name is mapped to a

j avax. sql . Dat aSour ce object through a naming service that uses the Java Naming and Directory Interface (JNDI).

Using this DataSource method is particularly recommended for application servers.

When an application requests a connection by using the get Connect i on method in the Dat aSour ce, then the method

returns a Connect i on object.

A Dat aSour ce object is a factory for Connect i on objects. An object that implements the Dat aSour ce interface is

typically registered with a JNDI service provider.

3.3.1. Overview of Tasks to Deploy DataSource Objects

Before an application can connect to a Dat aSour ce object, typically the system administrator deploys the Dat aSour ce

object so that the application programmers can start using it.

Data source properties are usually set by a system administrator using a GUI tool as part of the installation of the data
source. Users to the data source do not get or set properties. Management tools can get at properties by using

introspection.
Tasks involved in creating and registering a database object are:

1. Creating an instance of the Dat aSour ce class.
2. Setting the properties of the Dat aSour ce object.
3. Registering the Dat aSour ce object with a naming service that uses the Java Naming and Directory Interface (JNDI)

API.

An instance of the Dat aSour ce class and the Dat aSour ce object properties are usually set by an application developer
or system administrator using a GUI tool as part of the installation of the data source. If you are using an installed data

source, then see Programmatically Creating an Instance of the DataSource Class.
The subsequent topics show an example of performing these tasks programmatically.

For more information about using data sources, see Connecting with DataSource Objects in the JDBC™ Database

Access: Table of Contents documentation or other information available in the field.

12 | Chapter 3. Accessing Trafodion SQL Databases

https://docs.oracle.com/javase/tutorial/jdbc/basics/sqldatasources.html
https://docs.oracle.com/javase/tutorial/jdbc/TOC.html
https://docs.oracle.com/javase/tutorial/jdbc/TOC.html

JDBC Type 4 Programmer’s Reference Guide

3.3.2. DataSource Object Properties

A Dat aSour ce object has properties that identify and describe the actual data source that the object represents. These
properties include such information as the URL (the primary IP address or host name of the database), the database

schema and catalog names, the location of the database server, the name of the database, and so forth.

For details about Type 4 driver properties that you can use with the Dat aSour ce object, see Type 4 Driver Properties.

3.3.3. Programmatically Creating an Instance of the DataSource Class

A JDBC application can set Dat aSour ce properties programmatically and register with a DataSource object. To get or
set Dat aSour ce object properties programmatically, use the appropriate getter or setter methods on the

Tr af T4Dat aSour ce object or the Tr af T4Connect i onPool Dat aSour ce object.

Example

Tr af T4Dat aSource tenp = new Traf T4Dat aSour ce() ;
tenp. set Cat al og(" TRAFODI ON') ;

In the following example, the code fragment illustrates the methods that a Dat aSour ce object ds needs to include if the
object supports the ser ver Dat aSour ce property ds. set Ser ver Dat aSour ce("my_server _dat asource").In
this example, the code shows setting properties for the Tr af T4Dat aSour ce object to use the Type 4 driver to access a

Trafodion database:

Tr af T4Dat aSour ce ds = new Tr af T4Dat aSource() ;

ds.setUrl ("jdbc:t4jdbc://<primary | P addr or host nane>: 23400/");
ds. set Schema("nyschema") ;

ds. setUser("gunnar") ;

ds. set Password("ny_userpassword") ;

/'l Properties relevant for Type 4 connection pooling.

/'l Set ds.setMaxPool Si ze(-1) for turning OFF connection pooling
ds. set MaxPool Si ze("100") ;

ds. set M nPool Si ze("10") ;

/'l Properties relevant for Type 4 statenment pooling.

/'l Set ds.setMaxStatenent(0) for turning statenent pooling OFF
/1 Statenent pooling is enabled only when connection pooling is
/'l enabl ed.

ds. set MaxSt at enent s(" 7000") ;

This technique essentially builds a properties file. For more information, see Creating and Using a Properties File.

Chapter 3. Accessing Trafodion SQL Databases | 13

JDBC Type 4 Programmer’s Reference Guide

3.3.4. Programmatically Registering the DataSource Object

In the following example, the code shows how to register, programmatically, the Tr af T4Dat aSour ce object ds that was

created using the preceding code with JNDI.

java.util.Hashtable env = new java.util.Hashtable() ;
env. put (Context.| N Tl AL_CONTEXT_FACTORY, "Factory class nane here")

j avax. nam ng. Context ctx = new javax.nam ng.lnitial Context(env) ;
ctx. rebind("nmyDat aSource", ds)

3.3.5. Retrieving a DataSource Instance by Using JNDI and Connecting to the
Data Source

Typically, the JIDBC application looks up the data source JNDI name from a context object. Once the application has the

Dat aSour ce object, then the application does a get Connect i on() call on the data source and gets a connection.

The steps that JDBC application does to connect to and use the data source associated with the database are listed

below together with the application code to perform the operation.

1. Import the packages.

i mport javax.nam ng.* ;
i mport java.sqgl.* ;
i nport javax.sql.DataSource ;

2. Create the initial context.

Hasht abl e env = new Hasht abl e() ;

env. put (Context. | N Tl AL_CONTEXT_FACTCRY,

"“com sun. j ndi . f scont ext . Ref FSCont ext Factory") ;
try

{

}
catch(...)
{

Context ctx = new Initial Context(env) ;

14 | Chapter 3. Accessing Trafodion SQL Databases

JDBC Type 4 Programmer’s Reference Guide

3. Look up the JNDI name associated with the data source myDat aSour ce, where nmyDat aSour ce is the logical name

that will be associated with the real-world data source - server.

Dat aSource ds = (DataSource)ctx. | ookup("nyDataSource") ;

4. Create the connection using the data source.

con = ds. get Connection() ;

5. Do work with the connection. The following statements are just a simple example.

stmt = con.createStatenent() ;
try
{

}
catch (SQ.Exception e) {}

stmt . executeUpdate("drop table tdata") ;

3.3.6. Specifying the Properties File that Configures the Data Source

To use the properties file method to configure a Dat aSour ce object, the properties file must exist on disk and contain the
property nanme=property_val ue pairs that configure the data source. See Creating and Using a Properties File for

more information about creating this file.

When the JDBC application makes the connection, then the application should pass the properties file as a command-line

parameter:

java -Dt4jdbc. properti es=<path of properties file on disk>

3.4. Connection by Using the DriverManager Class

The j ava. sql . Dri ver Manager class is widely used to get a connection, but is less portable than the Dat aSour ce
class. The Dri ver Manager class works with the Driver interface to manage the set of drivers loaded. When an
application issues a request for a connection using the Dri ver Manager . get Connect i on method and provides a URL,

the Dri ver Manager finds a suitable driver that recognizes this URL and obtains a database connection using that driver.

org.trafodion.jdbc.t4. T4Dri ver is the Type 4 driver class that implements the j ava. sql . Dri ver interface.

Chapter 3. Accessing Trafodion SQL Databases | 15

JDBC Type 4 Programmer’s Reference Guide

3.4.1. Loading and Registering the Driver

Before connecting to the database, the application loads the Driver class and registers the Type 4 driver with the

DriverManager class in one of the following ways:

 Specifies the Type 4 driver class in the - Dj dbc. dri ver s option in the command line of the Java program:
-Djdbc. drivers=org.trafodion.jdbc.t4. T4Dri ver

* Uses the C ass. f or Name method programmatically within the application:
Cl ass.forName("org.trafodion.jdbc.t4. T4Driver")

» Adds the Type 4 driver class to the j ava. | ang. Syst emproperty j dbc. dri ver s property within the application:

jdbc. drivers=org.trafodion.jdbc.t4. T4ADri ver

16 | Chapter 3. Accessing Trafodion SQL Databases

JDBC Type 4 Programmer’s Reference Guide

3.4.2. Establishing the Connection

The Dri ver Manager . get Connect i on method accepts a string containing a Type 4 driver URL. The JDBC URL for the

Type 4 driver is

jdbc:t4jdbc://<ip addr or host nane>: 23400/[:][property=val ue[; property2=val ue2]...]

Parameter Usage

<ip addr or host name> The primary IP address or host name for the Trafodion database.
23400 The port number for the Trafodion SQL database.

property = val ue and Specifies a Type 4 driver property name-property value pair. The pairs
property2=val ue2 must be separated by a semicolon (;). For example,

T4LogLevel =ALL; T4LogFi | e=t enpl. | og.
For information about the properties file, see Type 4 Driver Properties.

To establish a connection, the JDBC application can use this code:

Class.forNane("org.trafodion.jdbc.t4. T4Driver") ; //loads the driver
String url = "jdbc:t4jdbc://<database prinmary | P address>: 23400/ "

Connection con = DriverManager. get Connection(url, "userlD', "Passwd") ;
The variable con represents a connection to the data source that can be used to create and execute SQL statements.

3.4.3. Guidelines for Connections Using the Driver Manager

» The Type 4 driver defines a set of properties that you can use to configure the driver. For detailed information about

these properties, see Type 4 Driver Properties.
» Java applications can specify the properties in these ways (listed in the order of precedence):

1. Using thej ava. util . Properties parameterin the get Connecti on method of DriverManager class.

2. Using the database URL in the Dri ver Manager . get connect i on method, where the URL is:
jdbc:t4jdbc://<ip addr or host nane>: 23400/ : property=val ue

<i p addr or host nane>isthe primary IP address or host name for the Trafodion database.

Chapter 3. Accessing Trafodion SQL Databases | 17

JDBC Type 4 Programmer’s Reference Guide

3. Using a properties file for the JDBC driver. The properties file is passed as a command-line parameter. The format

to enter the properties file in the command line is:

- Dt 4j dbc. properties=<path of properties file on disk>

For example, - Dt 4j dbc. properti es=C: \t enp\t 4props

For information about the properties file, see Creating and Using a Properties File.

4. Using JDBC properties with the - D option in the command line. If used, this option applies to all JDBC connections

using the Dri ver Manager within the Java application. The format in the command line is:

- Dt 4j dbc. property_name=<property val ue>

For example, - Dt 4] dbc. maxSt at enent s=1024

18 | Chapter 3. Accessing Trafodion SQL Databases

JDBC Type 4 Programmer’s Reference Guide

3.5. Connection Pooling

The Type 4 driver provides an implementation of connection pooling, where a cache of physical database connections are
assigned to a client session and reused for the database activity. If connection pooling is active, connections are not
physically closed. The connection is returned to its connection pool when the Connect i on. cl ose() method is called.
The next time a connection is requested by the client, the driver will return the pooled connection, and not a new physical

connection.

e The connection pooling feature is available when the JDBC application uses either the Dr i ver Manager class or
Dat aSour ce interface to obtain a JDBC connection. The connection pool size is determined by the naxPool Si ze

property value and m nPool Si ze property value.

By default, connection pooling is disabled. To enable connection pooling, set the maxPoolSize property to an integer

value greater than O (zero).
* Manage connection pooling by using these Type 4 driver properties:
« maxPool Si ze under maxpoolsize Property
e m nPool Si ze under minPoolSize Property
e initial Pool Si ze under initialPoolSize Property
* maxSt at ement s under maxStatements Property

» When used with the DriverManager class, the Type 4 driver has a connection-pool manager that determines which

connections are pooled together by a unique value for these combination of properties:

url

cat al og
schema
user namne
passwor d

Therefore, connections that have the same values for the combination of a set of properties are pooled together.

The connection-pooling property values used at the first connection of a given combination are
' effective throughout the life of the process. An application cannot change any of these property

values after the first connection for a given combination.

Chapter 3. Accessing Trafodion SQL Databases | 19

JDBC Type 4 Programmer’s Reference Guide

3.6. Statement Pooling

The statement pooling feature allows applications to reuse the PreparedStatement object in the same way that they can

reuse a connection in the connection pooling environment. Statement pooling is completely transparent to the application.

3.6.1. Guidelines for Statement Pooling

» To enable statement pooling, set the maxSt at ement s property to an integer value greater than 0 and enable

connection pooling. For more information, see initialPoolSize Property and Connection Pooling.
» Enabling statement pooling for your JDBC applications might dramatically improve the performance.

» Explicitly close a prepared statement by using the St at enent . cl ose method because Pr epar edSt at enment

objects that are not in scope are also not reused unless the application explicitly closes them.
 To ensure that your application reuses a Pr epar edSt at enent , call either of these methods:
e St at enent . cl ose net hod: called by the application.

e Connecti on. cl ose net hod: called by the application. All the Pr epar edSt at enent objects that were in use

are ready to be reused when the connection is reused.

3.6.2. Troubleshooting Statement Pooling

Note the following Type 4 driver implementation details if you are troubleshooting statement pooling:

» The Type 4 driver looks for a matching Pr epar edSt at enent object in the statement pool and reuses the
Pr epar edSt at enent . The matching criteria include the SQL string, catalog, current schema, current transaction

isolation, and result set holdability.

If the Type 4 driver finds the matching Pr epar edSt at enent object, then the driver returns the same

Pr epar edSt at enent object to the application for reuse and marks the Pr epar edSt at ement object as in use.

e The algorithm, earlier used are the first to go, is used to make room for caching subsequently generated

Pr epar edSt at enent objects when the number of statements reaches the maxSt at enent s limit.

* The Type 4 driver assumes that any SQL CONTROL statements in effect at the time of execution or reuse are the

same as those in effect at the time of SQL compilation.

If this condition is not true, then reuse of a Pr epar edSt at enent object might result in unexpected behavior.

20 | Chapter 3. Accessing Trafodion SQL Databases

JDBC Type 4 Programmer’s Reference Guide

* Avoid recompiling to yield performance improvements from statement pooling. The SQL executor automatically

recompiles queries when certain conditions are met. Some of these conditions are:
¢ A run-time version of a table has a different redefinition timestamp than the compile-time version of the same table.
* An existing open operation on a table was eliminated by a DDL or SQL utility operation.
e The transaction isolation level and access mode at execution time is different from that at the compile time.
* When a query is recompiled, then the SQL executor stores the recompiled query; therefore, the query is recompiled
only once until any of the previous conditions are met again.

e The Type 4 driver does not cache St at enent objects.

3.7. Thread-Safe Database Access

In the Type 4 driver, API layer classes are implemented as instance-specific objects to ensure thread safety:
o Tr af T4Dat aSour ce. get Connect i on() is implemented as a synchronized method to ensure thread safety in
getting a connection.
* Once a connection is made, the Connect i on object is instance-specific.

« If multiple statements are run on different threads in a single connection, then statement objects are serialized to

prevent data corruption.

3.8. "Update . . . Where Current of" Operations

The fetch size on a Resul t Set must be 1 when performing an update . . . where current of cursor SQL
statement.

If the value of the fetch size is greater than 1, the result of the update . . . where current of operation might be

one of the following:

» An incorrect row might be updated based on the actual cursor position.

* An SQLException might occur because the cursor being updated might have already been closed.

The following is an example of setting a result set’s fetch size to 1 and executing an update . . . where current of

cursor SQL statement.

Chapter 3. Accessing Trafodion SQL Databases | 21

JDBC Type 4 Programmer’s Reference Guide

ResultSet rs ;

rs.setFetchSize(1) ;
String stl = rs.getCursorNane()

Statenment stnm2 =
connection. creat eSt at enent (Resul t Set. TYPE_FORWARD ONLY
, Resul t Set . CONCUR_UPDATABLE

)
stnt 2. execut eUpdat e(" UPDATE cat 2. sch2.tabl el
SET j = 'update row WHERE CURRENT OF "
+ stl
)

3.9. INFOSTATS Command for Obtaining Query Costs

The INFOSTATS command reports the roll-up costs of a particular query. INFOSTATS is a pass-through command that
collects statistics for a prepared statement. Statistics are returned to the JDBC application as a result set as soon as the

prepare is finished. The result set has these columns:

Column Description

Query I D (SQ._CHAR) The unique identifier for the query.
CPUTi me (SQL_DOUBLE)

An estimate of the number of seconds of processor time it might take to execute the
instructions for this query. A value of 1.0 is 1 second.

| OTi me (SQL_DOUBLE) An estimate of the number of seconds of I/0 time (seeks plus data transfer) to
perform the 1/O for this query.
MsgTi me (SQL_DOUBLE) An estimate of the number of seconds it takes for the messaging for this query. The

estimate includes the time for the number of local and remote messages and the
amount of data sent.

I dl eTi me (SQ._DOUBLE) An estimate of the maximum number of seconds to wait for an event to happen for
this query. The estimate includes the amount of time to open a table or start an ESP
process.

Total Ti re (SQL_DOUBLE) Estimated cost associated to execute the query.

Cardinality (SQ._DOUBLE) Estimated number of rows that will be returned.

22 | Chapter 3. Accessing Trafodion SQL Databases

JDBC Type 4 Programmer’s Reference Guide

3.9.1. Use of the INFOSTATS Command

The INFOSTATS command can only be used with PreparedStatement objects. The syntax is:

I NFOSTATS cur sor _nane

where cur sor _nane is the name of the prepared statement. If the cursor name is case-sensitive, then enclose it in single

quotes.

To get the cursor name, use the get St at enent Label () method that is defined for the Trafodion JDBC Type 4 driver

with class:

org.trafodion.jdbc.t4. T4PreparedStatenent: public String
get St at enrent Label () ;

Considerations

* You can use INFOSTATS in these methods only:

java.sql . Statenment . execut eQuery(String sql)
java. sql . Statenent. execute(String sql)

» set Cur sor Nane is not supported with INFOSTATS.

« If you invoke INFOSTATS incorrectly, the Type 4 driver issues this error:
Message: | NFOSTATS conmand can only be execut ed
by calling execute(String sqgl) nethod.

Sql st at e HYO00
Sgl code 29180

Chapter 3. Accessing Trafodion SQL Databases | 23

JDBC Type 4 Programmer’s Reference Guide

Example of INFOSTATS

Statement s = conn.createStatenment() ;

Tr af TAPr epar edSt at enent p =
(Traf T4Pr epar edSt at enent) conn. pr epar eSt at enent (
"SELECT * FROMt WHERE i = ?") ;

bool ean results = s.execute("INFOSTATS " + p.get StatenentLabel ()) ;

if (results)

{
ResultSet rs = s.getResultSet() ;
while (rs.next())
{
/] process data
}
}

Sample Output

Queryl D MXI D001001128212016369912348191 16_SQ._CUR 9829657
CPUTi me: 0. 09975778464794362

| OTi me: 0.10584000146627659

MsgTi ne: 0.09800000134418951

I dl eTine: 0.09800000134418951

Total Ti me: 0.10584000146627659

Cardinality: 100.0

24 | Chapter 3. Accessing Trafodion SQL Databases

JDBC Type 4 Programmer’s Reference Guide

3.10. Internationalization Support

3.10.1. When String Literals Are Used in Applications

Internationalization support in the driver affects the handling of string literals. The Type 4 driver handles string literals in

two situations.
1. When the driver processes an SQL statement. For example,

Statenment stnt = connection.getStatement () ;

stmt . execute("SELECT * FROMtablel WHERE col 1 = '"abcd"") ;
2. When the driver processes JDBC parameters. For example,

PreparedSt at enent pStnt = connecti on. prepar eSt at enent (
"SELECT * FROM tablel WHERE col 1 = ?") ;
pStnt.setString(1, "abcd")

To convert a string literal from the Java to an array of bytes for processing by the Trafodion, the Type 4 driver uses the

column type in the database.

3.10.2. Controlling String Literal Conversion by Using the Character-Set
Properties

The Type 4 driver provides character-set mapping properties. These properties allow you to explicitly define the translation

of internal SQL character-set formats to and from the Java string Unicode (Uni codeBi gUnmar ked) encoding.

The Type 4 driver provides character-set mapping properties through key values as shown in the following table.

Key Default Value
| SC88591 | SC88591_1
KANJI SJI'S
KSC5601 EUC KR

Chapter 3. Accessing Trafodion SQL Databases | 25

JDBC Type 4 Programmer’s Reference Guide

A description of these character sets appears in table below, which summarizes the character sets supported by

Trafodion.
Trafodion Character Set Corresponding Java Encoding Set! Description
1ISO88591 ISO88591 1 Single-character, 8-bit character-data type

ISO88591 supports English and other Western
European languages.

! Canonical Name for j ava. i o and j ava. | ang API.

For detailed information, see 1ISO88591 Property.
Using the Character-Set Properties

The j ava. sql . Prepar edSt at ement class contains the methods set Stri ng() and set Character Strean() .

These methods take a String and Reader parameter, respectively.

The j ava. sql . Resul t Set class contains the methods get St ri ng() and get Char act er St r eant() . These methods

return a String and Reader, respectively.

Retrieving a Column

When you retrieve a column as a string (for example, call the get St ri ng() or get Char act er St r eammethods), the
Type 4 driver uses the character-set mapping property key to instantiate a String object (where that key corresponds to

the character set of the column).
Example

The following SQ. CREATE TABLE statement creates a table that has an | SO88591 column.

CREATE TABLE t1 (cl1l CHAR(20) CHARACTER SET |S088591)

The JDBC program uses the following java command to set the 1ISO88591 property and issues the get Stri ng()

method.

java -Dt4j dbc. | SCB88591=SJIS testl.java

/1 The follow ng nmethod invocation returns a String object, which
/'l was created using the "SJI'S" Java canoni cal nane as the charset
/|l paranmeter to the String constructor.

String s1 =rs.getString(1) ; // get colum 1 as a String

26 | Chapter 3. Accessing Trafodion SQL Databases

JDBC Type 4 Programmer’s Reference Guide

Setting a Parameter

When you set a parameter by using a String (for example, call the set St ri ng() method), the Type 4 driver uses the
key’s value when generating the internal representation of the String (where that key corresponds to the character set of
the column). The character-set parameter to the String get Byt es method is the Java Canonical name that corresponds

to the column’s character set.
Example

The following SQ. CREATE TABLE statement creates a table that has an ISO88591 column:

CREATE TABLE t1 (c1 CHAR(20) CHARACTER SET | SC88591) ;
> java -DI SC88591=SJI S testl.java

The following method invocation sets column one of st nt to the String "abcd" where "abcd" is encoded as SJIS. The

charset parameter to the String get Byt es method is SJISstnt . set String(1, "abcd") ;.

Controlling What Happens on an Exception

You can use the t ransl ati onVeri fi cati on property to explicitly define the behavior of the driver if the driver cannot
translate all or part of an SQL parameter. The value portion of the property can be TRUE or FALSE. (The default value is
FALSE).

Ifthe transl ati onVerificati on property’s value is FALSE and the driver cannot translate all or part of an SQL
statement, then the translation is unspecified. In most cases, the characters that are untranslatable are encoded as

ISO88591 single-byte question marks (* ?' or 0x3F). No exception or warning is thrown.

Ifthe transl ati onVerification property’s value is TRUE and the driver cannot translate all or part of an SQL

statement, then the driver throws an SQLExcept i on with the following text:

Transl ation of paraneter to {0} failed. Cause: {1}

where { 0} is replaced with the target character set and { 1} is replaced with the cause of the translation failure.

For more information, see translationVerification Property.

Chapter 3. Accessing Trafodion SQL Databases | 27

JDBC Type 4 Programmer’s Reference Guide

3.10.3. Localizing Error Messages and Status Messages

The Type 4 driver supports Internationalization through resource bundles for localized error messages and status
messages. The driver uses a set of static strings from a property file to map error messages and status messages to their

textual representation.
File-Name Format for the Localized-Messages File
The property file that has the messages must have a file name in the form:

T4AMessages_XX. properties

where xx is the locale name. The locale name is defined by the current default locale or by the language property.

The Type 4 driver is shipped with an error messages and status messages property file that contains the textual

representation of errors and status messages for the English locale. The file is named T4Messages_en. properti es.
Localized-Message String Format
A localized message file contains strings in the form:
nessage=nessage_t ext
Example

driver_err_error_fromserver _nsg=An error was returned fromthe server.
Error: {0} Error detail: {1}

where the nessage isdriver_err_error_from server_nsg. The nessage_text is: An error was returned

fromthe server. Error: {0} Error detail: {1}

The pattern { n} in message_t ext, where n equals 1, 2, 3, and so forth, is a placeholder that is filled in at run time by the

Type 4 driver. Any translation must include these placeholders.

28 | Chapter 3. Accessing Trafodion SQL Databases

JDBC Type 4 Programmer’s Reference Guide

Procedure to Create a Localized-Message File

1. Extract the T4AMessages_en. properties file,whichisinthejdbcT4-*.jar file.
Example
From a UNIX prompt, use the jar Java tool: j ar -x T4Messages_en. properties < jdbcT4-*.jar

2. Copy the file.
3. Edit the file and replace the English text with the text for your locale.

4. Save the file, giving it a file name that meets the naming requirements described under File-Name Format for the

Localized-Messages File.

5. Put the file in a directory anywhere in the class path for running the JDBC application.
The new messages file can be anywhere in the class path for running the user application.

At run time, if driver cannot read the messages property file, the driver uses the nessage portion of the property as the

text of the message. For a description of the message portion, see the Localized-Message String Format.

Chapter 3. Accessing Trafodion SQL Databases | 29

JDBC Type 4 Programmer’s Reference Guide

Chapter 4. Type 4 Driver Properties

4.1. Summary of Type 4 Driver Properties

Type 4 driver properties that effect client-side operations are summarized in the following tables. For the detailed

description, click the link provided in the property name.

4.1.1. Client-Side Properties

Connection-Control Properties

Property Name Description

Unless otherwise noted in the brief description, the particular property applies to the Dat aSour ce

object, Dri ver Manager object, and Connect i onPool Dat aSour ce object.

Default Value

dat aSour ceNane Specifies the registered DataSource or
ConnectionPoolDataSource name. (Can be set only on the
DriverManager object.)

| ogi nTi meout Sets the time limit that a connection can be attempted
before the connection disconnects.

net wor kTi neout Sets a time limit that the driver waits for a reply from the
database server.

Pooling Management Properties

Property Name Description

None.

60 (seconds)

0 (No network timeout is
specified.

Default Value

initialPool Si ze Sets the initial connection pool size when connection
pooling is used with the Type 4 driver. (Ignored for
connections made through the ConnectionPoolDataSource

object.)

max| dl eTi e Sets the number of seconds that a physical connection can
remain unused in the pool before the connection is closed.

maxPool Si ze Sets the maximum number of physical connections that the
pool can contain.

max St at enent s Sets the total number of PreparedStatement objects that the
connection pool should cache.

m nPool Si ze Limits the number of physical connections that can be in the

free connection pool.

30 | Chapter 4. Type 4 Driver Properties

-1 (Do not create an initial
connection pool.)

0 (Specifies no limit.)

-1 (Disables connection
pooling.)
0 (Disables statement pooling.)

-1 (The minPoolSize value is
ignored.)

JDBC Type 4 Programmer’s Reference Guide

Internationalization Properties

Property Name Description Default Value

| SO88591 Sets character-set mapping that corresponds to the ISO88591 1
ISO88591 character set.

KANJI Sets character-set mapping that corresponds to the KANJI SJIS (which is shift-JIS,
character set. Japanese)

KSC5601 Sets character-set mapping that corresponds to the ECU_KR (which is KS C 5601,
KSC5601 character set. ECU encoding, Korean)

| anguage Sets the language used for error messages. None.

transl ationVerifica Defines the behavior of the driver if the driver cannot FALSE

tion translate all or part of an SQL statement or SQL parameter.

Logging and Tracing Properties

Property Name Description Default Value

T4LogFi | e Sets the name of the logging file for the Type 4 driver. The name is defined by the
following pattern:
o/ t 4j dbc%u. | og

T4LogLevel Sets the logging levels that control logging output for the OFF
Type 4 driver.

Miscellaneous Client-Side Properties

Property Name Description Default Value

description Specifies the registered source name. None.

fetchBufferSize Provides the benefits of bulk fetch when rows are fetched 4 kilobytes
from a Resul t Set object.

properties Specifies the location of the properties file that contains None.

keyword-value pairs that specify property values for
configuring the Type 4 driver.

roundi nghvbde Specifies the rounding behavior of the Type 4 driver. ROUND_DOWN

Chapter 4. Type 4 Driver Properties | 31

JDBC Type 4 Programmer’s Reference Guide

4.1.2. Server-Side Properties

The Type 4 driver properties that effect server-side operations are summarized in the following tables. Unless otherwise

noted in the description, the particular property applies to the DataSource object, Dri ver Manager object, and

Connect i onPool Dat aSour ce object.

Type 4 Driver Server-Side Properties

Property Name

Description Default Value

cat al og

connecti onTi nmeout
passwor d

schemn

url

user

Sets the default catalog used to access SQL objects None. Must be "TRAFODION" in
referenced in SQL statements if the SQL objects are not the current release.

fully qualified.

Sets the number of seconds a connection can be idle before -1 (Use the ConnTimeout value
the connection is physically closed by DCS. set on the server data source.)

Sets the password value for passing to the database. Can Empty string.
also change the password.

Sets the database schema that accesses SQL objects None.
referenced in SQL statements if the SQL objects are not
fully qualified.

Sets the URL value for the database. Can be set only on the None.
Dri ver Manager object.

Sets the user value for the database. None.

4.2. How to Specify JDBC Type 4 Properties

The Type 4 JDBC driver properties configure the driver. These properties can be specified in a data source, a connection

URL (the primary IP address or host name on the database), a properties file, or in the java command line.

Java properties have the form:

key=val ue

At run time, the driver looks for a specific set of property keys and takes action based on their associated values.

32 | Chapter 4. Type 4 Driver Properties

JDBC Type 4 Programmer’s Reference Guide

4.2.1. Where to Set Properties

 For connections made through a Dat aSour ce or a Connect i onPool Dat aSour ce, set the property on the

Dat aSour ce or the Connect i onPool Dat aSour ce object.
e For the Dri ver Manager class, set properties in either of two ways:
1. Using the option - Dpr operty_nane=property_val ue in the command line.

2. Using the j ava. uti | . Properti es parameter in the get Connecti on() method of the Dri ver Manager class.

4.2.2. Creating and Using a Properties File

JDBC applications can provide property values to configure a connection by using a file that contains properties for the
JDBC driver. This property file is passed as a java command-line parameter. The format to enter the properties file in the
command line is:

- Dt 4j dbc. properties=<path of the properties file on disk>"
Example

- Dt 4j dbc. properties=C:\tenp\t4props\ myprops. properties

To create the file, use the editor of your choice on your workstation to type in the property values. The entries in properties

file must have a property_nane=pr operty_val ue value-pair format:
property_name=property_val ue

Example
maxSt at ement s=1024

To configure a Dat aSour ce connection, the properties file might contain property names and values as indicated in the

following list:

Chapter 4. Type 4 Driver Properties | 33

JDBC Type 4 Programmer’s Reference Guide

url =jdbc:t4jdbc://<primary | P addr or host name of database>: 23400/
user =dat abase_user nane

passwor d=nypassword

descri ption=<a string>

cat al og=TRAFODI ON

schenma=nyschena

maxPool Si ze=20

m nPool Si ze=5

max St at ement s=20

| ogi nTi neout =15

i nitial Pool Si ze=10
connecti onTi meout =10

T4LogLevel =OFF

T4LogFi | e=/ nyl ogdi rectory/ nyl ogfile

4.2.3. Setting Properties in the Command Line

When a Type 4 driver property is specified on the command line through the java - D option, the property must include the

prefix: t 4j dbc.

This notation, which includes the period (.), ensures that all the Type 4 driver property names are unique for a Java

application.
Example

The maxStatements property becomes:

- Dt 4j dbc. naxSt at enent s=10

4.2.4. Precedence of Property Specifications

If a particular property is set several ways by an application, the value used depends on how the value was set according

to the following order of precedence:

1. Set on the Dat aSour ce object, Dri ver Manager object, or Connect i onPool Dat aSour ce object.
2. Setthrough the j ava. util . Properti es parameter in the get Connecti on method of Dri ver Manager class.
3. Set the property in a properties file specified by the t 4j dbc. properti es property.

4. Setthe - Dt 4j dbc. property_name=<property val ue>inthe java command line.

For more information, see order of precedence for properties specified in various ways for use with the Driver Manager.

34 | Chapter 4. Type 4 Driver Properties

JDBC Type 4 Programmer’s Reference Guide

Chapter 5. Type 4 Driver Property Descriptions

The properties are listed in alphabetic order with their descriptions. For the properties summarized in categories, see

Summary of Type 4 Driver Properties.

5.1. catalog Property

The cat al og property sets the default catalog used to access SQL objects referenced in SQL statements if the SQL

objects are not fully qualified.

Set this property on a Dat aSour ce object, Connect i onPool Dat aSour ce object, or Dri ver Manager object. For

information about how to set properties, see How to Specify JDBC Type 4 Properties.

Data type: String

Def aul t: none

Example

Specifying the catalog TRAFODION:

cat al og=TRAFQODI ON

Chapter 5. Type 4 Driver Property Descriptions | 35

JDBC Type 4 Programmer’s Reference Guide

5.2. connectionTimeout Property

The connecti onTi neout property sets the number of seconds a connection can be idle before the connection is

physically closed by DCS.

Set this property on a Dat aSour ce object, Connect i onPool Dat aSour ce object, or Dri ver Manager object. For

information about how to set properties, see How to Specify JDBC Type 4 Properties.

Data type: short
Units: seconds
Default: -1 (Use the ConnTi neout value set on the server-side data source.)

Range: -1, 0 to 32767

 Zero (0) specifies infinity as the timeout value.
» A non-zero positive value overrides the value set on the Trafodion data source, if allowed by the connectivity settings.

» A negative value is treated as -1.
Example
Consider the following scenario.

Even if a connection is not being used, it takes up resources. The application abandons connections; that is, the

application does not physically close a connection after the application finishes using the connection.

However, you can configure the connection to close itself after 300 seconds by setting the connect i onTi meout

property. Then, when a connection is not referenced for 300 seconds, the connection automatically closes itself.

In this example, the specification to set the connect i onTi meout property is:

connecti onTi nmeout =300

36 | Chapter 5. Type 4 Driver Property Descriptions

JDBC Type 4 Programmer’s Reference Guide

5.3. fetchBufferSize Property

The f et chBuf f er Si ze property provides the benefits of bulk fetch.

This property sets the value in kilobytes (KB) of the size of the fetch buffer that is used when rows are fetched from a

Resul t Set object after a successful execut eQuer y() operation on a statement.

Set this property on a Dri ver Manager object. For information about how to set properties, see How to Specify JDBC

Type 4 Properties.

Data type: short
Default size: 4

Range: 4 through 32767

e Zero and negative values are treated as default values.

» The Type 4 driver guarantees that the number of rows internally fetched will be no less than the minimum of the row
size (set using the set Fet chSi ze method) and the number of rows that will fit in the memory specified by the

set Fet chSi ze (set using the property).

Example

fetchBufferSi ze=32

Chapter 5. Type 4 Driver Property Descriptions | 37

JDBC Type 4 Programmer’s Reference Guide

5.4. initialPoolSize Property

The i ni ti al Pool Si ze property sets the initial connection pool size when connection pooling is used with the Type 4

driver.

Set this property on a Dat aSour ce object, Connect i onPool Dat aSour ce object, or Dri ver Manager object. For

information about how to set properties, see How to Specify JDBC Type 4 Properties.

The driver creates n connections (where nisi ni ti al Pool Si ze) for each connection pool when the first connection is
requested. For example, ifi ni ti al Pool Si ze is set to 5 for a data source, then the driver attempts to create and pool

five connections the first time the application calls the data source’s get Connect i on() method.

Data type: int
Units: nunber of physical connections
Default: -1 (Do not create an initial connection pool.)

Range: -1 to nmaxPool Si ze

* Any negative value is treated as -1.

* Values can be less than nmi nPool Si ze, but must not exceed naxPool Si ze. If the specified value is greater than

maxPool Si ze, the naxPool Si ze property value is used.

Example

initial Pool Si ze=10

38 | Chapter 5. Type 4 Driver Property Descriptions

JDBC Type 4 Programmer’s Reference Guide

5.5. 1S0O88591 Property

The | SO88591 character-set mapping property corresponds to the SQL 1SO88591 character set, which is a single-byte 8-
bit character set for character data types. This property supports English and other Western European languages. For

more information, see Internationalization Support.

Set this property on a Dat aSour ce object or Dri ver Manager object. This property is ignored for connections made
through the Connect i onPool Dat aSour ce object. For information about how to set properties, see How to Specify

JDBC Type 4 Properties.

Data type: String

Defaul t: 1S088591_1

The value can be any valid Java Canonical Name as listed in the "Canonical Name for java.io and java.lang API" column

of the Java documentation.

For more information, see Internationalization Support.

Chapter 5. Type 4 Driver Property Descriptions | 39

http://docs.oracle.com/javase/6/docs/technotes/guides/intl/encoding.doc.html

JDBC Type 4 Programmer’s Reference Guide

5.6. KANJI Property

The KANJI character-set mapping property corresponds to the SQL KANJI character set, which is a double-byte
character set widely used on Japanese mainframes. This property is a subset of Shift JIS: the double character portion.

The encoding for this property is big endian.

Set this property on a Dat aSour ce object, Connect i onPool Dat aSour ce object, or Dri ver Manager object. For

information about how to set properties, see How to Specify JDBC Type 4 Properties.

Data type: String

Default: SJIS (which is shift-JI'S, Japanese)
Example
java -Dt4j dbc. KANJI =SJI S

For more information, see Internationalization Support.

40 | Chapter 5. Type 4 Driver Property Descriptions

JDBC Type 4 Programmer’s Reference Guide

5.7. KSC5601 Property

The KSC5601 character-set mapping property corresponds to the SQL KSC5601 character set, which is a double-byte

character set.

Set this property on a Dat aSour ce object, Connect i onPool Dat aSour ce object, or Dri ver Manager object. For

information about how to set properties, see How to Specify JDBC Type 4 Properties.

Data type: String

Default: ECU KR (which is KS C 5601, ECU encodi ng, Korean)

The value can be any valid Java Canonical Name as listed in the "Canonical Name for java.io and java.lang API" column

of the Java documentation.

Example
java -Dt4jdbc. KSC5601=ECU KR

For more information, see Internationalization Support.

Chapter 5. Type 4 Driver Property Descriptions | 41

http://docs.oracle.com/javase/6/docs/technotes/guides/intl/encoding.doc.html

JDBC Type 4 Programmer’s Reference Guide

5.8. language Property

The | anguage property sets the language used for the error messages. For more information about using this property,

see Localizing Error Messages and Status Messages

Set this property on a Dat aSour ce object, Connect i onPool Dat aSour ce object, or Dri ver Manager object. For

information about how to set properties, see How to Specify JDBC Type 4 Properties.

Data type: String

Defaul t: none

The value can be any valid Java Canonical Name as listed in the "Canonical Name for java.io and java.lang API" column

of the Java documentation.
Example

To set the language to shift-JIS, Japanese:

| anguage=SJI S

42 | Chapter 5. Type 4 Driver Property Descriptions

http://docs.oracle.com/javase/6/docs/technotes/guides/intl/encoding.doc.html

JDBC Type 4 Programmer’s Reference Guide

5.9. loginTimeout Property

The | ogi nTi meout property sets the time limit that a connection can be attempted before the connection disconnects.

When a connection is attempted for a period longer than the set value, in seconds, the connection disconnects.

Set this property on a Dat aSour ce object, Connect i onPool Dat aSour ce object, or Dri ver Manager object. For

information about how to set properties, see How to Specify JDBC Type 4 Properties.

Data type: int
Units: seconds
Default: 60

Range: 0 to 2147483647

If set to O (zero), no login timeout is specified.

Chapter 5. Type 4 Driver Property Descriptions | 43

JDBC Type 4 Programmer’s Reference Guide

5.10. maxIdleTime Property

The max| dl eTi ne property determines the number of seconds that a physical connection should remain unused in the

pool before the connection is closed. 0 (zero) indicates no limit.

Set this property on a Dat aSour ce object, Connect i onPool Dat aSour ce object, or Dri ver Manager object. For

information about how to set properties, see How to Specify JDBC Type 4 Properties.

Data type: int
Units: seconds
Default: O (No timeout)
Range: 0 through 2147483647
Any negative value is treated as 0, which indicates that no time limit applies.

Example

To set the maximum idle time to 5 minutes (300 seconds):

j ava -Dt4j dbc. maxI dl eTi ne=300

44 | Chapter 5. Type 4 Driver Property Descriptions

JDBC Type 4 Programmer’s Reference Guide

5.11. maxPoolSize Property

The maxPool Si ze property sets the maximum number of physical connections that the pool can contain. These
connections include both free connections and connections in use. When the maximum number of physical connections is

reached, the Type 4 driver throws an SQLException and sends the message, Maximum pool size is reached.

Set this property on a Dat aSour ce object, Connect i onPool Dat aSour ce object, or Dri ver Manager object. For

information about how to set properties, see How to Specify JDBC Type 4 Properties.

Data type: int
Units: nunber of physical connections
Default: -1 (Disables connection pooling.)

Range: -1, O through 2147483647, but greater than m nPool Size

The value determines connection-pool use as follows:

« Any negative value is treated like -1.
* 0 means no maximum pool size.

A value of -1 disables connection pooling.

Any positive value less than m nPool Si ze is changed to the mi nPool Si ze value.

Chapter 5. Type 4 Driver Property Descriptions | 45

JDBC Type 4 Programmer’s Reference Guide

5.12. maxStatements Property

The maxSt at enent s property sets the total number of Pr epar edSt at enent objects that the connection pool should

cache. This total includes both free objects and objects in use.

Set this property on a Dat aSour ce object, Connect i onPool Dat aSour ce object, or Dri ver Manager object. For

information about how to set properties, see How to Specify JDBC Type 4 Properties.

Data type: int
Units: nunber of objects
Default: O (Disables statenment pooling.)

Range: 0 through 2147483647

The value 0 disables statement pooling. Any negative value is treated like O (zero).

n To improve performance, we recommend that you enable statement pooling for your JDBC

applications because this pooling can dramatically help the performance of many applications.

I Statement pooling can be in effect only if connection pooling is enabled.

Example

To specify statement pooling, type:

max St at enent s=10

46 | Chapter 5. Type 4 Driver Property Descriptions

JDBC Type 4 Programmer’s Reference Guide

5.13. minPoolSize Property

The m nPool Si ze property limits the number of physical connections that can be in the free connection pool.

Set this property on a Dat aSour ce object, Connect i onPool Dat aSour ce object, or Dri ver Manager object. For

information about how to set properties, see How to Specify JDBC Type 4 Properties.

Data type: int
Default: -1 (The mi nPool Size value is ignored.)

Range: -1, O through n, but |less than nmaxPool Si ze

* Any negative value is treated like -1.
* Any value greater than maxPool Si ze is changed to the maxPool Si ze value.

e The value of m nPool Si ze is set to -1 when maxPool Si ze is -1. The value determines connection pool use as

follows:

« When the number of physical connections in the free pool reaches the m nPool Si ze value, the Type 4 driver

closes subsequent connections by physically closing them and not adding them to the free pool.

« 0 (zero) means that the connections are not physically closed; the connections are always added to the free pool

when the connection is closed.

Example

Use the following specification to set the m nPool Si ze value to 1, which ensures that one connection is always retained:

m nPool Si ze=1

Chapter 5. Type 4 Driver Property Descriptions | 47

JDBC Type 4 Programmer’s Reference Guide

5.14. networkTimeout Property

The net wor kTi neout property sets a time limit that the driver waits for a reply from the database server. When an
operation is attempted for a period longer than the set value, in seconds, the driver stops waiting for a reply and returns an

SQLEXxception to the user application.

Set this property on a Dat aSour ce object, Connect i onPool Dat aSour ce object, or Dri ver Manager object. For

information about how to set properties, see How to Specify JDBC Type 4 Properties.

Be careful when using this property. A network timeout causes the socket connection between the
Type 4 driver and the connectivity server to timeout. If the server is engaged in a transaction or an
SQL operation, then the server continues to perform that transaction or operation until the transaction

or operation fails, the transaction manager times out, or the server realizes that the Type 4 driver
client has gone away. A network timeout can result in an open transaction or operation that continues
for a significant time before failing or rolling back. As a result of a network timeout, the connection

becomes unavailable.

Data type: int
Units: seconds
Default: O (No network timeout is specified.)

0 through to 2147483647

48 | Chapter 5. Type 4 Driver Property Descriptions

JDBC Type 4 Programmer’s Reference Guide

5.15. password Property

The passwor d property sets the password value for passing to the DCS server. By using this property, you can also

change the password. The password is encrypted when it is passed to the server.

The format for specifying the password is:
password=old [, new, new]

* ol d is the current password

* newis the new password. Passwords must be 6 to 8 characters long and cannot contain double quotes ().

Set this property on a Dat aSour ce object, Connect i onPool Dat aSour ce object, or Dri ver Manager object. For

information about how to set properties, see How to Specify JDBC Type 4 Properties.

Data type: String

Default: enpty string
Example

passwor d=eyeOweU$

5.16. properties Property

The pr operti es property specifies the location of the properties file that contains keyword-value pairs that specify

property values for configuring the Type 4 driver. For more information, see Creating and Using a Properties File.

Chapter 5. Type 4 Driver Property Descriptions | 49

JDBC Type 4 Programmer’s Reference Guide

5.17. reserveDatalLocators Property

The r eser veDat aLocat or s property sets the number of data locators to be reserved for a process that stores data in a

LOB table.

Set this property on a Dat aSour ce object, Connect i onPool Dat aSour ce object, or Dri ver Manager object. For

information about how to set properties, see How to Specify JDBC Type 4 Properties.

Data type: int
Units: nunber of data |locators to be reserved
Def aul t: 100

Range: 1 to 9, 223,372,036, 854, 775,807 (2**63 -1)

Do not set a value much greater than the number of data locators actually needed. If the specified value is O (zero) or less,

the default value (100) is used.

Base the setting of the value of the r eser veDat aLocat or s property on the application profile being executed. If the
application inserts a large number of LOB items, then a higher value of the r eser veDat aLocat or s property can
prevent frequent updating of the ZZ_DATA_LOCATOR value in the LOB table. However, if the application inserts only a
small number of LOB items, then a smaller value is better. If a large value is used, then holes (unused data-locator

numbers) could occur in the LOB table. These holes represent unused space.

Also, the administrator should avoid setting high values for the r eser veDat aLocat or s (for example, in the range of

trillions or so). Setting high values prevents other Type 4 applications that use LOB table from reserving data locators.
For additional information about data locator use, see Reserving Data Locators.

To change this value for a JDBC application, specify this property from the command line.

Example

The following command reserves 150 data locators for program class myPr ogr anCl ass.

java -Dt4j dbc. reserveDat aLocat or s=150 nyPrograntC ass

50 | Chapter 5. Type 4 Driver Property Descriptions

JDBC Type 4 Programmer’s Reference Guide

5.18. roundingMode Property

The r oundi nghvbde property specifies the rounding behavior of the Type 4 driver. For example, if the data is 1234.127
and column definition is NUMERI C(6, 2) and the application does set Doubl e() and get Doubl e() , then the value
returned is 1234.12, which is truncated as specified by the default rounding mode, ROUND _DOWN.

Set this property on a Dat aSour ce object, Connect i onPool Dat aSour ce object, or Dri ver Manager object. For

information about how to set properties, see How to Specify JDBC Type 4 Properties.

Data type: String

Def aul t: ROUND_DOMN
Values for roundingMode are:

ROUND_CEl LI NG
ROUND_ DOV
ROUND_FLOOR
ROUND_HALF_DOWN
ROUND_HALF_EVEN
ROUND_HALF_UP
ROUND_UNNECESSARY

ROUND_UP

* For the definition of rounding mode values, see the java.math.BigDecimal documentation.

« If the application sets erroneous values for the r oundi ngiMbde property, no error is thrown by the Type 4 driver. The
driver uses ROUND _DOWN value instead.

» To have the application get the Dat aTr uncat i on exception when data is truncated, set the r oundi nghMode property
to ROUND_UNNECESSARY.

Chapter 5. Type 4 Driver Property Descriptions | 51

https://docs.oracle.com/javase/7/docs/api/java/math/BigDecimal.html

JDBC Type 4 Programmer’s Reference Guide

5.19. schema Property

The schenm property sets the database schema that accesses SQL objects referenced in SQL statements if the SQL

objects are not fully qualified.

Set this property on a Dat aSour ce object, Connect i onPool Dat aSour ce object, or Dri ver Manager object. For

information about how to set properties, see How to Specify JDBC Type 4 Properties.

Data type: String

Defaul t: none
Example

schema=sal es

52 | Chapter 5. Type 4 Driver Property Descriptions

JDBC Type 4 Programmer’s Reference Guide

5.20. T4LogFile Property

The T4LogFi | e property sets the name of the logging file for the Type 4 driver.

Set this property on a Dat aSour ce object, Connect i onPool Dat aSour ce object, or Dri ver Manager object. For

information about how to set properties, see How to Specify JDBC Type 4 Properties.
Data type: String

Default file name is defined by the following pattern:
o/t 4j dbc%u. | og

where

» / represents the local pathname separator.

* %h represents the value of the user.home system property. %u represents a unique number to resolve conflicts.
Any valid file name for your system is allowed.
If you explicitly specify a log file, then that file is overwritten each time a Fi | eHandl er is established using that file name.

To retain previously created log files, use the standard “java.util.logging “file syntax to append a unique number onto each

log file.
Example

You can have the following property in a data source:
T4LogFile = C /tenp/ MyLogFi | e%u. | og

That name causes the Type 4 driver to create a new log file using a unique name for each connection made through that

data source.

Chapter 5. Type 4 Driver Property Descriptions | 53

JDBC Type 4 Programmer’s Reference Guide

Example

C. /tenp/ MyLogFi | €e43289. | og
C. /tenp/ MyLogFi | e87634.1 og

C./tenp/ MyLogFi | e27794.1 og

If you explicitly specify a log file that is not fully qualified, the Type 4 driver creates the file in the current working directory,

for example, in the directory from which the JVM was invoked.

For detailed information about java.util.logging, see the logging summary documentation.

54 | Chapter 5. Type 4 Driver Property Descriptions

https://docs.oracle.com/javase/7/docs/api/java/util/logging/package-summary.html

JDBC Type 4 Programmer’s Reference Guide

5.21. TALogLevel Property

The T4LogLevel property sets the logging levels that control logging output for the Type 4 driver. The Java package

java.util.logging logs error messages and traces messages in the driver.

Set this property on a Dat aSour ce object, Connect i onPool Dat aSour ce object, or Dri ver Manager object. For

information about how to set properties, see How to Specify JDBC Type 4 Properties.

Data type: String

Defaul t: OFF

Logging Levels

Level Description

OFF A special level that turns off logging; the default setting.

SEVERE Indicates a serious failure; usually applies to SQL exceptions generated by the Type 4 driver.

WARNI NG Indicates a potential problem, which usually applies to SQL warnings generated by the Type 4
driver.

I NFO Provides informational messages, typically about connection pooling, statement pooling, and
resource usage. This information can help in tuning application performance.

CONFI G Provides static configuration messages that can include property values and other Type 4 driver
configuration information.

FI NE Provides tracing information from the Type 4 driver methods described in the Type 4 driver API.

The level of tracing is equivalent to the level of tracing provided when calling the
set LogWi t er () method of the Dri ver Manager class or the DataSource class.

FI NER Indicates a detailed tracing message for which internal Type 4 driver methods provide messages.
These messages can be useful in debugging the Type 4 driver.

FI NEST Indicates a highly detailed tracing message. The driver provides detailed internal data messages
that can be useful in debugging the Type 4 driver.

ALL Logs all messages.

Example

To enable tracing, use the t 4] dbc. T4LogLevel property specified in the command line:

- Dt 4j dbc. T4LogLevel =FI NE

Chapter 5. Type 4 Driver Property Descriptions | 55

JDBC Type 4 Programmer’s Reference Guide

5.21.1. T4LogLevel Considerations

* If a security manager is defined by your application using an AppServer, then Loggi ngPer i ssi on must be must be

granted in the j ava. pol i cy file as follows:

perm ssion java.util.logging.Loggi ngPerni ssion "control™, "" ;
» The Type 4 driver is not designed to inherit the j ava. uti | .| oggi ng. Fi | eHandl er . | evel settings at program
startup.

56 | Chapter 5. Type 4 Driver Property Descriptions

JDBC Type 4 Programmer’s Reference Guide

5.22. translationVerification Property

The transl ati onVeri ficati on property defines the behavior of the driver if the driver cannot translate all or part of

an SQL statement or SQL parameter.

Set this property on a Dat aSour ce object, Connect i onPool Dat aSour ce object, or Dri ver Manager object. For

information about how to set properties, see How to Specify JDBC Type 4 Properties.

The value can be TRUE or FALSE.

Data type: String

Defaul t: FALSE

Value Scenario What Happens
FALSE The driver is unable to translate all or part of an SQL In most cases, the characters that are untranslatable
statement, then the translation is unspecified. are encoded as 1SO88591 single-byte question marks
(? or Ox3F). No exception or warning is thrown.
TRUE The driver cannot translation all or part of an SQL The driver throws an SQLException with this text.

statement or parameter.
Transl ation of parameter to {0} failed.
Cause: {1}

where { 0} is replaced with the target character set

and { 1} is replaced with the cause of the translation
failure.

If the t ransl ati onVerificati on property is set to TRUE, then the process can use significantly

more system resources. For better performance, set this property to FALSE.

For more information, see Internationalization Support.

Chapter 5. Type 4 Driver Property Descriptions | 57

JDBC Type 4 Programmer’s Reference Guide

5.23. url Property

The ur | property sets the URL value for the database. This property is used in the Dri ver Manager object. The format

to specify the URL is:

jdbc:t4jdbc//<primary | P addr or hostnanme of database>: 23400/][:]
[property=value [; property2=value | ...]

where <primary | P_addr or hostnane of database>: 23400> specifies the location of the database.

Data type: String

Defaul t: none
Example

url =j dbc: t4j dbc: // mynode. myconpanynet wor k. net : 23400/

5.23.1. url Property Considerations

« If the url parameter is not specified and Dr i ver Manager . get Connect i on() is called, then the Type 4 driver throws

an SQLException.
* If you use a literal IPV4 or IPV6 address in a URL, note these guidelines:
e For IPV6 only: enclose the address in brackets ([and]).
e The port number is optional according to both the IPV4 and IPV6 standard.

e The default port number for the database is 23400.

58 | Chapter 5. Type 4 Driver Property Descriptions

JDBC Type 4 Programmer’s Reference Guide

5.24. user Property

The user property sets the role value for the connectivity service. The role name passed must have adequate access

permissions for SQL data accessed through the connectivity service.

Set this property on a Dat aSour ce object, Connect i onPool Dat aSour ce object, or Dri ver Manager object. For

information about how to set properties, see How to Specify JDBC Type 4 Properties.

Data type: String

Default: enpty string
Example

user =Syst em r ol enanme

Chapter 5. Type 4 Driver Property Descriptions | 59

JDBC Type 4 Programmer’s Reference Guide

Chapter 6. Type 4 Driver Compliance

6.1. Compliance Overview

The Type 4 driver conforms where applicable to the JDBC 3.0 API specification. However, this driver differs from the JDBC
standard in some ways. This subsection describes the JDBC methods that are not supported, the methods and features
that deviate from the specification, and features that are Trafodion extensions to the JDBC standard. JDBC features that

conform to the specification are not described in this subsection.

In addition, this chapter lists features of Trafodion SQL that are not supported by the Trafodion JDBC Type 4 driver, other

unsupported features, and restrictions.

6.2. Unsupported Features

These methods in the java.sql package throw an SQLException with the message Unsupported feature -

<met hod- nane>:

Method Comments
Cal | abl eStat enent . get Array(i nt paraneterl ndex) The particular Cal | abl eSt at enent
Cal | abl eSt at enrent . get Array(String paraneter Nane) method is not supported.

Cal | abl eSt at ement . get Bl ob(i nt par anet er | ndex)

Cal | abl eSt at enrent . get Bl ob(Stri ng paranet er Nane)

Cal | abl eSt at ement . get Cl ob(i nt par anet er | ndex)

Cal | abl eSt at enent . get Cl ob(String paranet er Nane)

Cal | abl eSt at enent . get bj ect (i nt paraneterl ndex, Map nap)
Cal | abl eSt at enent . get Cbj ect (Stri ng paramnet er Nane, Map nap)
Cal | abl eSt at ement . get Ref (i nt par anet er | ndex)

Cal | abl eSt at enent . get Ref (Stri ng par anet er Nane)

Cal | abl eSt at ement . get URL(i nt par anmet er | ndex)

Cal | abl eSt at enent . get URL(Stri ng paranet er Nane)

Cal | abl eSt at enent . execut eBat ch()

Connecti on. rel easeSavepoi nt (Savepoi nt savepoi nt) The particular Connect i on methods are
Connection. rol | back(Savepoi nt savepoi nt) not supported.

Connecti on. set Savepoi nt ()

Connecti on. set Savepoi nt (String nane)

Prepar edSt at enent . set Array(i nt paraneterlndex, Array X) The particular Pr epar edSt at enent
Prepar edSt at enent . set Ref (i nt parameter| ndex, Ref x) methods are not supported.
Prepar edSt at enent . set URL(i nt paraneterl ndex, URL x)

60 | Chapter 6. Type 4 Driver Compliance

JDBC Type 4 Programmer’s Reference Guide

Method Comments

Resul t Set. get Array(i nt col uml ndex) The particular Resul t Set methods are
Resul t Set . get Array(String col utmNane) not supported.

Resul t Set . get Obj ect (i nt col uml ndex, Map map)

Resul t Set . get Obj ect (String col umNane, Map map)

Resul t Set . get Ref (i nt col umml ndex) Resul t Set. get Ref (Stri ng

col umNane)

Resul t Set .
Resul t Set .
Resul t Set .
Resul t Set .
Resul t Set .

get URL(i nt col umml ndex)

get URL(String col unmNane)
updat eArray(int col uml ndex)
updat eArray(String col umNane)
updat eRef (i nt col umml ndex)

"ResultSet.updateRef(String columnName)

St at enent .
St at enent .

The following

support ed:

Method

The particular St at enent methods are
not supported.

get Quer yTi meout ()
set Quer yTi meout ()

methods in the java.sql package throw an SQLException with the message Aut o gener at ed keys not

Comments

Connection. prepareStatenent (String sql,
aut oGener at edKeys)
Connecti on. prepareStatenent (String sql,

i nt Automatically generated keys are not
supported.

int[]

col umml ndexes)

Connecti on. prepareStatenent (String sql,

String[]

col umNarnes)

St at enent

. execut eUpdate(String sql,
St at enent .
St at enent .
St at enent .

i nt aut oGener at edKeys) Automatically generated keys are not
int[] columml ndexes) supported.
String[] col utmmNanes)

execut eUpdate(String sql,
execut eUpdate(String sql,
get Gener at edKeys()

The following methods in the java.sql package throw an SQLException with the message Dat a t ype not supported:

Method

Comments

Cal | abl eSt at enent . get Byt es(i nt paranet er | ndex)
Cal | abl eSt at enent . set Byt es(String paraneterl ndex,

X)

The particular data type is not supported.
byt es[]

The following interfaces in the j ava. sql package are not implemented in the Type 4 driver:

Method Comments

java. sql . Array The underlying data types are not
j ava. sql . Ref supported by Trafodion.

j ava. sql . Savepoi nt

j ava. sql . SQ.Dat a

j ava. sql . SQLI nput

j ava. sql . SQLQut put

java.sql . Struct

Chapter 6. Type 4 Driver Compliance | 61

JDBC Type 4 Programmer’s Reference Guide

The following interfaces in the j avax. sql package are not implemented in the Type 4 driver:

Method

Comments

j avax. sql . XAConnect i on
j avax. sql . XADat aSour ce

Distributed Transactions, as described in
the JDBC 3.0 API specification, are not
yet implemented.

For additional information about deviations for some methods, see Deviations.

6.3. Deviations

The following table lists methods that differ in execution from the JDBC specification. When an argument in a method is

ignored, the Type 4 driver does not throw an SQLEXxception,thus allowing the application to continue processing. The

application might not obtain the expected results, however. Other methods listed do not necessarily throw an

SQLException, unless otherwise stated, although they differ from the specification.

The j ava. sql . Dat abaseMet aDat a. get Ver si onCol uims() method mimics the

j ava. sql . Dat abaseMet aDat a. get Best Rowi denti fi er () method because Trafodion SQL

does not support SQL_ ROANVER (a columns function that returns the column or columns in the

specified table, if any, that are automatically updated by the data source when any value in the row is

updated by any transaction).

Method

Comments

j ava. sql . Dat abaseMet aDat a. get Col ums(String
catal og, String schemaPattern, String
t abl eNamePattern, String col uimNanePatt ern)

j ava. sql . Dat abaseMet aDat a. get Tabl es(Stri ng
catal og, String schemaPattern, String[]

types)

j ava. sql . Dat abaseMet aDat a. get UDTs(Stri ng
catal og, String schemaPattern, String
tabl eNanePattern, int[] types)

62 | Chapter 6. Type 4 Driver Compliance

The column is added to the column data, but its value is set
to NULL because Trafodion SQL does not support the
column type for these types:

SCOPE_CATALOG,
SCOPE_SCHEMA,
SCOPE_TABLE,

and SOURCE_DATA TYPE

The column is added to the column data, but its value is set
to NULL because Trafodion SQL does not support the
column type for these types:

TYPE_CAT,
TYPE_SCHEMA,

TYPE_NAME,

SELF_REFERENCI NG_COL_NAME,
and REF_GENERATI ON.

BASE_TYPE is added to the column data, but its value is
set to NULL because Trafodion SQL does not support the
base type.

Method

JDBC Type 4 Programmer’s Reference Guide

Comments

j ava.

)

j ava.
j ava.

j ava.

j ava.

j ava.

j ava.

sql .

sql .
. Connecti on. prepar eSt at enent (.

sql

sql .
sql .

sql

sql

Dat abaseMet aDat a. get Ver si onCol umms(

Connecti on. cr eat eSt at enent (.

Resul t Set .
St at enent .

. St at enent .

. St at enent .

set FetchDirection(.
cancel ()

set EscapeProcessi ng(.

set FetchDirection(.

)

)

Mimics the

Dat abaseMet aDat a. get Best Row denti fier ()
method because Trafodion SQL does not support
SQL_ROW/ER (a columns function that returns the column or
columns in the specified table, if any, that are automatically
updated by the data source when any value in the row is
updated by any transaction).

The Type 4 driver does not support the scroll-sensitive result
set type, so an SQL Warning is issued if an application
requests that type. The result set is changed to a scroll-
insensitive type.

The fetch direction attribute is ignored.

In some instances, drops the connection to the server
instead of just canceling the query. You must then reconnect
to the server. Note that the connection is dropped if

cancel () isissued for a statement that is being
processed. Otherwise the connection is maintained.

Because Trafodion SQL parses the escape syntax, disabling
escape processing has no effect.

The fetch direction attribute is ignored.

Chapter 6. Type 4 Driver Compliance | 63

JDBC Type 4 Programmer’s Reference Guide

6.4. Trafodion Extensions

The Trafodion extensions to the JDBC standard implemented in the Type 4 driver are as follows.

6.4.1. Internationalization of Messages

The Type 4 driver is designed so that Java messages can be adopted for various languages. The error messages are
stored outside the source code in a separate property file and retrieved dynamically based on the locale setting. The error
messages in different languages are stored in separate property files based on the language and country. This extension

does not apply to all messages that can occur when running JDBC applications.

For details, see Localizing Error Messages and Status Messages.

6.4.2. Additional DatabaseMetaData APIs

APIs added to the T4Dat abaseMet aDat a class provide these capabilities:

» Get a description of a table’s synonyms.

public java.sql.ResultSet getSynonym nfo(String catalog, String schema, String
table) throws SQLException

6.5. Conformance of DatabaseMetaData Methods' Handling of Null
Parameters

This topic describes how the Type 4 driver determines the value of null parameters passed as a parameter value on
DatabaseMetaData methods. Since other vendors might implement the JDBC specification differently, this information

explains the Type 4 driver results on the affected queries.

This implementation applies to methods that take parameters that can represent a pattern. The names of these

parameters have the format:
attributePattern

The many methods of the java.sgl.DatabaseMetaData class are affected; for example, the get Col uims() method.

For another example, schema is the attribute in the parameter schenmaPat t er n, which is a parameter to the

j ava. sql . Resul t Set . get At tri but es method.

64 | Chapter 6. Type 4 Driver Compliance

JDBC Type 4 Programmer’s Reference Guide

public ResultSet getAttributes(String catal og
, String schenaPattern
, String typeNanePattern
, String attributeNanePattern
) throws SQ.Exception

If the application passes a null value, the null is treated as follows:

« If a parameter name contains the suffix Pattern, the null is interpreted as a %wild card.
* If the parameter name does not contain the suffix Pat t er n, nulls are interpreted as the default value for that
parameter.

Using this example, null parameters are interpreted as follows:

cat al og The default catalog name.

schemaPattern A %wild card retrieves data for all schemas of the specified

catalog

Chapter 6. Type 4 Driver Compliance | 65

JDBC Type 4 Programmer’s Reference Guide

6.6. Type 4 Driver Conformance to SQL Data Types

6.6.1. JDBC Data Types

The following table shows the JDBC data types that are supported by Type 4 driver and their corresponding Trafodion SQL

data types:

JDBC Data Type

Support by JDBC Driver for Trafodion SQL

Trafodion SQL Data Type

Types. Array
Types. Bl G NT
Types. Bl NARY

Types.BI T

CHAR
DATE

DECI MAL

DI STI NCT
DOUBLE

FLOAT

| NTEGER

JAVA_ OBJECT
LONGVARBI NARY

Types.
Types.
Types.
Types.
Types.
Types.
Types.
Types.
Types.

LONGVARCHAR
NULL

NUMERI C
REAL

REF

SMALLI NT
STRUCT

TI ME

TI MESTAMP
TI NYI NT

Types.
Types.
Types.
Types.
Types.
Types.
Types.
Types.
Types.

Types.
Types. VARBI NARY

VARCHAR
BOOLEAN

Types.
Types.

Types. DATALI NK

! Because of mapping provided by Trafodion, a Resul t Set . get Obj ect () method returns a string object instead of an

array of bytes.

No
Yes

Data type is mapped by Trafodion SQL. Data
type varies from that used for table creation.

Data type is mapped by Trafodion SQL. Data
type varies from that used for table creation.

Yes
Yes
Yes
No

Yes
Yes
Yes
No

Data type is mapped by Trafodion SQL. Data
type varies from that used for table creation.

Yes. Maximum length is 4018.
No
Yes
Yes
No
Yes
No
Yes
Yes

Data type is mapped by Trafodion SQL. Data
type varies from that used for table creation.

Data type is mapped by Trafodion SQL. Data
type varies from that used for table creation.

Yes

Data type is mapped by Trafodion SQL. Data
type varies from that used for table creation.

No

66 | Chapter 6. Type 4 Driver Compliance

Not applicable.
LARGEI NT
CHAR(n) !

CHAR(1)

CHAR(n)

DATE

DECI MAL(p, S)

Not applicable.
DOUBLE PRECI SI ON
FLOAT(p)

| NTEGER

Not applicable.
VARCHAR(n) *

VARCHAR[(n)]
Not applicable.
NUMVERI C(p, s)
FLOAT(p)

Not applicable.
SNVALLI NT

Not applicable.
TI VE

TI MESTAMP
SVALLI NT

VARCHAR(n)

VARCHAR()
CHAR(1)

Not applicable.

JDBC Type 4 Programmer’s Reference Guide
The Type 4 driver maps the following data types to the JDBC data type Types. OTHER:

| NTERVAL YEAR(p)

| NTERVAL YEAR(p) TO MONTH
| NTERVAL MONTH(p)

| NTERVAL DAY(p)

| NTERVAL DAY(p) TO HOUR

| NTERVAL DAY(p) TO M NUTE
| NTERVAL DAY(p) TO SECOND
| NTERVAL HOUR(p)

| NTERVAL HOUR(p) TO M NUTE
| NTERVAL HOUR(p) TO SECOND
| NTERVAL M NUTE(p)

I NTERVAL M NUTE(p) TO SECOND
| NTERVAL SECOND(p)

6.7. Floating-Point Support

The Type 4 driver supports only IEEE floating-point data to be passed between the application client and the Type 4 driver.

6.8. SQLJ Support

The Type 4 driver supports non-customized SQLJ applications, but does not support customized SQLJ applications.

Chapter 6. Type 4 Driver Compliance | 67

JDBC Type 4 Programmer’s Reference Guide

6.9. JIDBC 3.0 Features Not Supported by the Type 4 Driver

These features are not required for JDBC 3.0 compliance, and they are not supported by the Trafodion JDBC Type 4

driver.

Multiple result sets returned by batch statements.

» Database savepoint support. (Not provided in Trafodion SQL)

Retrieval of auto generated keys.

 Transform group and type mapping.

Relationship between connector architecture and JDBC 3.0 SPI.
» Secured socket communication or encryption for the interaction between the Type 4 driver and DCS.

 Security context (user name and password) implicit propagation from AppServer to the Type 4 driver.

IPV6 protocol stack. (IPV6 addressing is emulated over IPV4 on the Trafodion platform - server side)

Distributed transactions.

6.10. Restrictions

e The Type 4 driver supports only database features that are supported by Trafodion SQL and SPJ. Therefore, the Type

4 driver is not fully compliant with JDBC 3.0 specifications.

» The Type 4 driver depends on DCS (Data Connectivity Service) for all server side manageability related features.

68 | Chapter 6. Type 4 Driver Compliance

JDBC Type 4 Programmer’s Reference Guide

Chapter 7. Tracing and Logging Facilities

The Type 4 driver provides two tracing and logging facilities:
 Standard JDBC tracing and logging functionality as defined by the JDBC standard
 Type 4 driver logging facility

Server-side tracing (logging) is enabled by configuring DCS.

7.1. Standard JDBC Tracing and Logging Facility

The JDBC standard provides a logging and tracing facility, which allows tracing JDBC method calls by setting the log
writer. To set the log writer, either call the set LogW i t er () method on the Dri ver Manager class or call the

set LogWit er () method on the Dat aSour ce class (or Connect i onPool Dat aSour ce class).

« ADriver Manager log writer is a character output stream to which all logging and tracing messages for all
connections made through the Dri ver Manager are printed. This stream includes messages printed by the methods
of this connection, messages printed by methods of other objects manufactured by the connection, and so on. The

Dri ver Manager log writer is initially null, that is, the default is for logging to be disabled.
For information about using the setLogWriter method, see the DriverManager class API.

» A Dat aSour ce log writer is a character output stream to which all logging and tracing messages for this data source
are printed. This stream includes messages printed by the methods of this object, messages printed by methods of
other objects manufactured by this object, and so on. Messages printed to a data-source-specific log writer are not
printed to the log writer associated with the j ava. sqgl . Dri ver Manager class. When a Dat aSour ce object is

created, the log writer is initially null; that is, the default is for logging to be disabled.

For information about using the setLogWriter method, see the DriverSource interface API.

Chapter 7. Tracing and Logging Facilities | 69

https://docs.oracle.com/javase/7/docs/api/java/sql/DriverManager.html
https://docs.oracle.com/cd/E16338_01/appdev.112/e13995/oracle/jdbc/pool/OracleDataSource.html

JDBC Type 4 Programmer’s Reference Guide

7.2. The Type 4 Driver Logging Facility

The Type 4 driver Logging facility allows you to retrieve internal tracing information, which you can use in debugging the

driver. It also allows you to capture error and warning messages.

In addition to the standard JDBC tracing and logging facility, the Type 4 driver provides an independent logging facility
(Type 4 Driver Logging). The Type 4 Driver Logging provides the same level of logging and tracing as the standard JDBC

tracing and logging facility with the following additional information:

More detail about the internals of the Type 4 driver and internal tracing information
 Type 4 driver performance-tuning information
 Finer control over the amount and type of logging information

 Error and warning messages

7.2.1. Controlling Type 4 Driver Logging Output

The Type 4 driver provides two properties that you can use to control logging output.

e T4LogLevel : Specifies the level of logging. For information about using this property, see T4LogLevel Property.

» T4LogFi | e: Specifies the file to which the driver is to write logging information. For information about using this

property, see T4LogFile Property.

If the application sets several property values, see Precedence of Property Specifications to determine which setting

applies.
Example

These properties file entries set the logging level to SEVERE and specify a log file name:

T4LogLevel = SEVERE

T4LogFi |l e=c: /T4l ogfil el. |l og

70 | Chapter 7. Tracing and Logging Facilities

JDBC Type 4 Programmer’s Reference Guide

7.2.2. Message Format

The format of the trace output is

sequence- nunmber ~ tine-stanp ~ thread-id
~ [connection-id] ~ [server-id] ~ [dial ogue-id]
~ [class].[nmethod][(paraneters)] ~ [text]

Identifier Provides

sequence- nunber A unigue sequence number in increasing order.
time-stanp The time of the message, for example 10/17/2004 12:48:23.
thread-id The thread identifier within the Java VM.

connection-id
server-id

di al ogue-id
cl ass

net hod
paraneters
t ext

If applicable, a unique ID for the connection associated with the message.

If applicable, information about the connectivity server associated with the message.
The server-id is of the form:

TCP: node- nane. server - nane/ por t - nunber : ODBC
where

node- nane is the name of the Trafodion database node.
server - nane is the name of the Trafodion platform.
port - nunber is the port to which the server is connected.

Example

TCP: \ banshee-t cp. $20133/ 46003: CDBC

If applicable, the di al ogue-i d used for the DCS connection.

If applicable, the name of the class that issued the logging request.

If applicable, the name of the method that issued the logging request.
An optional set of parameters associated with the method.

Optional textual information for the message.

The tilde (~) character separates message parts. This separator allows you to format the message
using tools, such as Excel, Word, UNIX sort, and so forth. For example, you can format and sort
messages based on sequence number or thread ID. You can edit the log file and change the
separator (the tilde) to any character you want. When possible, numbers (such as t hr ead- i d and

sequence- nunber) are prepended with zeros (0) to allow for readable formatting.

Chapter 7. Tracing and Logging Facilities | 71

JDBC Type 4 Programmer’s Reference Guide

7.2.3. Examples of Logging Output

» Output where T4LogLevel is setto SEVERE:

00000036 ~ Dec 8, 2006 10:05:55 AM PST ~ 10 ~ 4508606 ~ null
~ null ~ T4Messages. creat eSQLExcepti on("en_US",
"socket _wite_error”, "null") ~

e Output where T4LogLevel is setto FI NER:

0000006 ~ 10/22/2004 10:34:45 ~ 001234 ~ 0049934 ~ FetchRowSet Message ~ narshal
~ Entering FetchRowSet Message. narshal (en_US
, 48345
, STMI_MX_8843
, 5
, 4192,
, 0
, 0)

72 | Chapter 7. Tracing and Logging Facilities

